Unknown

Dataset Information

0

Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.


ABSTRACT: Scaffolding genomes into complete chromosome assemblies remains challenging even with the rapidly increasing sequence coverage generated by current next-generation sequence technologies. Even with scaffolding information, many genome assemblies remain incomplete. The genome of the threespine stickleback (Gasterosteus aculeatus), a fish model system in evolutionary genetics and genomics, is not completely assembled despite scaffolding with high-density linkage maps. Here, we first test the ability of a Hi-C based proximity-guided assembly (PGA) to perform a de novo genome assembly from relatively short contigs. Using Hi-C based PGA, we generated complete chromosome assemblies from a distribution of short contigs (20-100 kb). We found that 96.40% of contigs were correctly assigned to linkage groups (LGs), with ordering nearly identical to the previous genome assembly. Using available bacterial artificial chromosome (BAC) end sequences, we provide evidence that some of the few discrepancies between the Hi-C assembly and the existing assembly are due to structural variation between the populations used for the 2 assemblies or errors in the existing assembly. This Hi-C assembly also allowed us to improve the existing assembly, assigning over 60% (13.35 Mb) of the previously unassigned (~21.7 Mb) contigs to LGs. Together, our results highlight the potential of the Hi-C based PGA method to be used in combination with short read data to perform relatively inexpensive de novo genome assemblies. This approach will be particularly useful in organisms in which it is difficult to perform linkage mapping or to obtain high molecular weight DNA required for other scaffolding methods.

SUBMITTER: Peichel CL 

PROVIDER: S-EPMC5892396 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.

Peichel Catherine L CL   Sullivan Shawn T ST   Liachko Ivan I   White Michael A MA  

The Journal of heredity 20170901 6


Scaffolding genomes into complete chromosome assemblies remains challenging even with the rapidly increasing sequence coverage generated by current next-generation sequence technologies. Even with scaffolding information, many genome assemblies remain incomplete. The genome of the threespine stickleback (Gasterosteus aculeatus), a fish model system in evolutionary genetics and genomics, is not completely assembled despite scaffolding with high-density linkage maps. Here, we first test the abilit  ...[more]

Similar Datasets

| S-EPMC5577786 | biostudies-literature
| S-EPMC8022941 | biostudies-literature
| S-EPMC6627416 | biostudies-literature
| PRJNA504450 | ENA
| S-EPMC9178229 | biostudies-literature
| S-EPMC7368989 | biostudies-literature
| S-EPMC2829049 | biostudies-literature
| S-EPMC4815461 | biostudies-literature
| S-EPMC10230677 | biostudies-literature
| S-EPMC9156908 | biostudies-literature