Unknown

Dataset Information

0

Approximate inference of gene regulatory network models from RNA-Seq time series data.


ABSTRACT: BACKGROUND:Inference of gene regulatory network structures from RNA-Seq data is challenging due to the nature of the data, as measurements take the form of counts of reads mapped to a given gene. Here we present a model for RNA-Seq time series data that applies a negative binomial distribution for the observations, and uses sparse regression with a horseshoe prior to learn a dynamic Bayesian network of interactions between genes. We use a variational inference scheme to learn approximate posterior distributions for the model parameters. RESULTS:The methodology is benchmarked on synthetic data designed to replicate the distribution of real world RNA-Seq data. We compare our method to other sparse regression approaches and find improved performance in learning directed networks. We demonstrate an application of our method to a publicly available human neuronal stem cell differentiation RNA-Seq time series data set to infer the underlying network structure. CONCLUSIONS:Our method is able to improve performance on synthetic data by explicitly modelling the statistical distribution of the data when learning networks from RNA-Seq time series. Applying approximate inference techniques we can learn network structures quickly with only moderate computing resources.

SUBMITTER: Thorne T 

PROVIDER: S-EPMC5896118 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Approximate inference of gene regulatory network models from RNA-Seq time series data.

Thorne Thomas T  

BMC bioinformatics 20180411 1


<h4>Background</h4>Inference of gene regulatory network structures from RNA-Seq data is challenging due to the nature of the data, as measurements take the form of counts of reads mapped to a given gene. Here we present a model for RNA-Seq time series data that applies a negative binomial distribution for the observations, and uses sparse regression with a horseshoe prior to learn a dynamic Bayesian network of interactions between genes. We use a variational inference scheme to learn approximate  ...[more]

Similar Datasets

| S-EPMC9580923 | biostudies-literature
| S-EPMC8796424 | biostudies-literature
| S-EPMC4673974 | biostudies-literature
| S-EPMC3493127 | biostudies-literature
| S-EPMC5860123 | biostudies-other
| S-EPMC4460925 | biostudies-literature
| S-EPMC7505465 | biostudies-literature
| S-EPMC4295839 | biostudies-literature
| S-EPMC2694766 | biostudies-literature
| S-EPMC6446481 | biostudies-literature