Project description:Generalized convulsive status epilepticus is a life-threatening emergency, because recurrent convulsions can cause death or injury. A common form of generalized convulsive status epilepticus is of focal onset. The neuronal circuits activated during seizure spread from the hippocampus, a frequent site of seizure origin, to the bilateral motor cortex, which mediates convulsive seizures, have not been delineated. Status epilepticus was initiated by electrical stimulation of the hippocampus. Neurons transiently activated during seizures were labelled with tdTomato and then imaged following brain slice clearing. Hippocampus was active throughout the episode of status epilepticus. Neuronal activation was observed in hippocampus parahippocampal structures: subiculum, entorhinal cortex and perirhinal cortex, septum, and olfactory system in the initial phase status epilepticus. The tdTomato-labelled neurons occupied larger volumes of the brain as seizures progressed and at the peak of status epilepticus, motor and somatosensory cortex, retrosplenial cortex, and insular cortex also contained tdTomato-labelled neurons. In addition, motor thalamic nuclei such as anterior and ventromedial, midline, reticular, and posterior thalamic nuclei were also activated. Furthermore, circuits proposed to be crucial for systems consolidation of memory: entorhinal cortex, retrosplenial cortex, cingulate gyrus, midline thalamic nuclei and prefrontal cortex were intensely active during periods of generalized tonic-clonic seizures. As the episode of status epilepticus waned, smaller volume of brain was activated. These studies suggested that seizure spread could have occurred via canonical thalamocortical pathway and many cortical structures involved in memory consolidation. These studies may help explain retrograde amnesia following seizures.
Project description:ObjectiveThe treatment of focal epilepsies is largely predicated on the concept that there is a "focus" from which the seizure emanates. Yet, the physiological context that determines if and how ictal activity starts and propagates remains poorly understood. To delineate these phenomena more completely, we studied activity outside the seizure-onset zone prior to and during seizure initiation.MethodsStereotactic depth electrodes were implanted in 17 patients with longstanding pharmacoresistant epilepsy for lateralization and localization of the seizure-onset zone. Only seizures with focal onset in mesial temporal structures were used for analysis. Spectral analyses were used to quantify changes in delta, theta, alpha, beta, gamma, and high gamma frequency power, in regions inside and outside the area of seizure onset during both preictal and seizure initiation periods.ResultsIn the 78 seizures examined, an average of 9.26% of the electrode contacts outside of the seizure focus demonstrated changes in power at seizure onset. Of interest, seizures that were secondarily generalized, on average, showed power changes in a greater number of extrafocus electrode contacts at seizure onset (16.7%) compared to seizures that remained focal (3.8%). The majority of these extrafocus changes occupied the delta and theta bands in electrodes placed in the ipsilateral, lateral temporal lobe. Preictally, we observed extrafocal high-frequency power decrements, which also correlated with seizure spread.SignificanceThis widespread activity at and prior to the seizure-onset time further extends the notion of the ictogenic focus and its relationship to seizure spread. Further understanding of these extrafocus, periictal changes might help identify the neuronal dynamics underlying the initiation of seizures and how therapies can be devised to control seizure activity.
Project description:Structural brain lesions are the most common cause of adult-onset epilepsy. The lesion location may contribute to the risk for epileptogenesis, but whether specific lesion locations are associated with a risk for secondary seizure generalization from focal to bilateral tonic-clonic seizures, is unknown. We identified patients with a diagnosis of adult-onset epilepsy caused by an ischemic stroke or a tumor diagnosed at the Turku University Hospital in 2004-2017. Lesion locations were segmented on patient-specific MR imaging and transformed to a common brain atlas (MNI space). Both region-of-interest analyses (intersection with the cortex, hemisphere, and lobes) and voxel-wise analyses were conducted to identify the lesion locations associated with focal to bilateral tonic-clonic compared to focal seizures. We included 170 patients with lesion-induced epilepsy (94 tumors, 76 strokes). Lesions predominantly localized in the cerebral cortex (OR 2.50, 95% C.I. 1.21-5.15, p = .01) and right hemisphere (OR 2.22, 95% C.I. 1.17-4.20, p = .01) were independently associated with focal to bilateral tonic-clonic seizures. At the lobar-level, focal to bilateral tonic-clonic seizures were associated with lesions in the right frontal cortex (OR 4.41, 95% C.I. 1.44-13.5, p = .009). No single voxels were significantly associated with seizure type. These effects were independent of lesion etiology. Our results demonstrate that lesion location is associated with the risk for secondary generalization of epileptic seizures. These findings may contribute to identifying patients at risk for focal to bilateral tonic-clonic seizures.
Project description:Epilepsy is a serious neurological disease characterized by recurrent unprovoked seizures. The exact etiology of epilepsy is not fully understood. Protrudin is a neural membrane protein and is found to be mutated in hereditary spastic paraplegia that characterized by symptoms like seizures. Here, we reported that the expression of protrudin was downregulated in the temporal neocortex of epileptic patients and in the hippocampus and cortex of pentylenetetrazol and kainic acid-kindled epileptic mouse models. Behavioral and electroencephalogram analyses indicated that overexpression of protrudin in the mouse hippocampus increased the latency of the seizure and decreased the frequency and duration of seizure activity. Using whole-cell patch clamp, overexpression of protrudin in the mouse hippocampus resulted in a reduction in action potential frequency and an increase in gamma-aminobutyric acid (GABA)ergic inhibitory current amplitude. Moreover, western blot analysis showed that the membrane expression of the GABA A receptor β2/3 subunit was also upregulated after protrudin overexpression, and coimmunoprecipitation resulted in a protein-protein interaction between protrudin, GABAARβ2/3 and GABA receptor-associated protein in the hippocampus of epileptic mice. These findings suggest that protrudin probably inhibits the occurrence and development of epilepsy through the regulation of GABAA receptor-mediated synaptic transmission, and protrudin might be a promising target for the treatment of epilepsy.
Project description:GABAA receptors, members of the pentameric ligand-gated ion channel superfamily, are widely expressed in the central nervous system and mediate a broad range of pharmaco-toxicological effects including bidirectional changes to seizure threshold. Thus, detection of GABAA receptor-mediated seizure liabilities is a big, partly unmet need in early preclinical drug development. This is in part due to the plethora of allosteric binding sites that are present on different subtypes of GABAA receptors and the critical lack of screening methods that detect interactions with any of these sites. To improve in silico screening methods, we assembled an inventory of allosteric binding sites based on structural data. Pharmacophore models representing several of the binding sites were constructed. These models from the NeuroDeRisk IL Profiler were used for in silico screening of a compiled collection of drugs with known GABAA receptor interactions to generate testable hypotheses. Amoxapine was one of the hits identified and subjected to an array of in vitro assays to examine molecular and cellular effects on neuronal excitability and in vivo locomotor pattern changes in zebrafish larvae. An additional level of analysis for our compound collection is provided by pharmacovigilance alerts using FAERS data. Inspired by the Adverse Outcome Pathway framework, we postulate several candidate pathways leading from specific binding sites to acute seizure induction. The whole workflow can be utilized for any compound collection and should inform about GABAA receptor-mediated seizure risks more comprehensively compared to standard displacement screens, as it rests chiefly on functional data.
Project description:ObjectiveRoyal demolition explosive (RDX) can induce seizures in wildlife and humans following release into the environment or after voluntary consumption. During the Vietnam War, RDX intoxication was the most common cause of generalized seizures in US service personnel, and in some sections of the armed forces, eating of RDX has continued as "a dare" to this day. After its mechanism of action was long unknown, RDX was recently shown to be a GABAA receptor antagonist. We here determined the GABAA receptor subtype-selectivity of RDX and mapped its functional binding site.MethodsWe used whole-cell patch-clamp to determine the potency of RDX on 10 recombinantly expressed GABAA receptors and mapped the RDX binding site using a combination of Rosetta molecular modeling and site-directed mutagenesis.ResultsRDX was found to reversibly inhibit the α1β2γ2 GABAA receptor with an IC50 of 23 μmol/L (95% CI 15.1-33.3 μmol/L), whereas α4 and α6 containing GABAA receptor combinations were 4-10-fold less sensitive. RDX is binding to the noncompetitive antagonist (NCA) site in the pore. In a molecular model based on the cryo-EM structure of the resting state of the α1β2γ2 receptor, RDX forms two hydrogen bonds with the threonines at the T6' ring and makes hydrophobic interactions with the valine and alanine in 2' position of the α1 or β2 subunits.InterpretationOur findings characterize the mechanism of action of RDX at the atomistic level and suggest that RDX-induced seizures should be susceptible to treatment with GABAA modulating drugs such as benzodiazepines, barbiturates, propofol, or neurosteroids.
Project description:The Ihara epileptic rat (IER) is a mutant model with limbic-like seizures whose pathology and causative gene remain elusive. In this report, via linkage analysis, we identified Down syndrome cell adhesion molecule-like 1(Dscaml1) as the responsible gene for IER. A single base mutation in Dscaml1 causes abnormal splicing, leading to lack of DSCAML1. IERs have enhanced seizure susceptibility and accelerated kindling establishment. Furthermore, GABAergic neurons are severely reduced in the entorhinal cortex (ECx) of these animals. Voltage-sensitive dye imaging that directly presents the excitation status of brain slices revealed abnormally persistent excitability in IER ECx. This suggests that reduced GABAergic neurons may cause weak sustained entorhinal cortex activations, leading to natural kindling via the perforant path that could cause dentate gyrus hypertrophy and epileptogenesis. Furthermore, we identified a single nucleotide substitution in a human epilepsy that would result in one amino acid change in DSCAML1 (A2105T mutation). The mutant DSCAML1A2105T protein is not presented on the cell surface, losing its homophilic cell adhesion ability. We generated knock-in mice (Dscaml1A2105T) carrying the corresponding mutation and observed reduced GABAergic neurons in the ECx as well as spike-and-wave electrocorticogram. We conclude that DSCAML1 is required for GABAergic neuron placement in the ECx and suppression of seizure susceptibility in rodents. Our findings suggest that mutations in DSCAML1 may affect seizure susceptibility in humans.
Project description:γ-Aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter in the mammalian brain and has been found to play an important role in the pathogenesis or the expression of many neurological diseases, including epilepsy. Although GABA can act on different receptor subtypes, the component of the GABA system that is most critical to modulation of seizure activity is the GABAA-receptor-chloride (Cl-) channel complex, which controls the movement of Cl- ions across the neuronal membrane. In the mature brain, binding of GABA to GABAA receptors evokes a hyperpolarising (anticonvulsant) response, which is mediated by influx of Cl- into the cell driven by its concentration gradient between extracellular and intracellular fluid. However, in the immature brain and under certain pathological conditions, GABA can exert a paradoxical depolarising (proconvulsant) effect as a result of an efflux of chloride from high intracellular to lower extracellular Cl- levels. Extensive preclinical and clinical evidence indicates that alterations in GABAergic inhibition caused by drugs, toxins, gene defects or other disease states (including seizures themselves) play a causative or contributing role in facilitating or maintaning seizure activity. Conversely, enhancement of GABAergic transmission through pharmacological modulation of the GABA system is a major mechanism by which different antiseizure medications exert their therapeutic effect. In this article, we review the pharmacology and function of the GABA system and its perturbation in seizure disorders, and highlight how improved understanding of this system offers opportunities to develop more efficacious and better tolerated antiseizure medications. We also review the available data for the two most recently approved antiseizure medications that act, at least in part, through GABAergic mechanisms, namely cenobamate and ganaxolone. Differences in the mode of drug discovery, pharmacological profile, pharmacokinetic properties, drug-drug interaction potential, and clinical efficacy and tolerability of these agents are discussed.
Project description:Advances in understanding the ways in which the immune system fails to control tumor growth or prevent autoimmunity have led to the development of powerful therapeutic strategies to treat these diseases. In contrast to conventional therapies that have a broadly suppressive effect, immunotherapies are more akin to targeted therapies because they are mechanistically driven and are typically developed with the goal of "drugging" a specific underlying pathway or phenotype. This means that their effects and toxicities are, at least in theory, more straightforward to anticipate. The development of functionalized antibodies, genetically engineered T cells, and immune checkpoint inhibitors continues to accelerate, illuminating new biology and bringing new treatment to patients. In the following sections, we provide an overview of immunotherapeutic concepts, highlight recent advances in the field of immunotherapies, and discuss controversies and future directions, particularly as these pertain to hematologic oncology or blood-related diseases. We conclude by illustrating how original research published in this journal fits into and contributes to the overall framework of advances in immunotherapy.
Project description:Broad-scale untargeted biochemical phenotyping is a technology that supplements widely accepted assays, such as organic acid, amino acid, and acylcarnitine analyses typically utilized for the diagnosis of inborn errors of metabolism. In this study, we investigate the analyte changes associated with 4-aminobutyrate aminotransferase (ABAT, GABA transaminase) deficiency and treatments that affect GABA metabolism. GABA-transaminase deficiency is a rare neurodevelopmental and neurometabolic disorder caused by mutations in ABAT and resulting in accumulation of GABA in the cerebrospinal fluid (CSF). For that reason, measurement of GABA in CSF is currently the primary approach to diagnosis. GABA-transaminase deficiency results in severe developmental delay with intellectual disability, seizures, and movement disorder, and is often associated with death in childhood. Using an untargeted metabolomics platform, we analyzed EDTA plasma, urine, and CSF specimens from four individuals with GABA-transaminase deficiency to identify biomarkers by comparing the biochemical profile of individual patient samples to a pediatric-centric population cohort. Metabolomic analyses of over 1,000 clinical plasma samples revealed a rich source of biochemical information. Three out of four patients showed significantly elevated levels of the molecule 2-pyrrolidinone (Z-score ≥2) in plasma, and whole exome sequencing revealed variants of uncertain significance in ABAT. Additionally, these same patients also had elevated levels of succinimide in plasma, urine, and CSF and/or homocarnosine in urine and CSF. In the analysis of clinical EDTA plasma samples, the levels of succinimide and 2-pyrrolidinone showed a high level of correlation (R = 0.73), indicating impairment in GABA metabolism and further supporting the association with GABA-transaminase deficiency and the pathogenicity of the ABAT variants. Further analysis of metabolomic data across our patient population revealed the association of elevated levels of 2-pyrrolidinone with administration of vigabatrin, a commonly used anti-seizure medication and a known inhibitor of GABA-transaminase. These data indicate that anti-seizure medications may alter the biochemical and metabolomic data, potentially impacting the interpretation and diagnosis for the patient. Further, these data demonstrate the power of combining broad scale genotyping and phenotyping technologies to diagnose inherited neurometabolic disorders and support the use of metabolic phenotyping of plasma to screen for GABA-transaminase deficiency.