Characterization of the Functional Variance in MbtH-like Protein Interactions with a Nonribosomal Peptide Synthetase.
Ontology highlight
ABSTRACT: Many nonribosomal peptide synthetases (NRPSs) require MbtH-like proteins (MLPs) for solubility or for activation of amino acid substrate by the adenylation domain. MLPs are capable of functional crosstalk with noncognate NRPSs at varying levels. Using enterobactin biosynthesis in Escherichia coli as a model MLP-dependent NRPS system, we use in vivo and in vitro techniques to characterize how seven noncognate MLPs influence the function of the enterobactin NRPS EntF when the cognate MLP, YbdZ, is absent. Using a series of in vitro assays to analyze EntF solubility, adenylation, aminoacylation, and in vitro enterobactin production, we show that interactions between MLPs and NRPSs are multifaceted and more complex than previously appreciated. We separate MLP influence on solubility and function in a manner that shows altered solubility is not indicative of a functional MLP/NRPS pair. Although much of the functional variation among these noncognates can be explained by differences in EntF affinity for an MLP or the extent an MLP alters EntF l-Ser affinity, we demonstrate that MLPs can have a broader impact beyond solubility and adenylation. First, we show that a noncognate MLP can affect formation of l-Ser-S-EntF. Second, under in vitro conditions saturating for substrate and MLP, enterobactin production remains compromised in the absence of an appropriate MLP partner. These data suggest that we expand our investigations into how the MLPs influence NRPS enzymology. A more detailed understanding of these influences will be essential for downstream engineering of hybrid NRPS systems.
SUBMITTER: Schomer RA
PROVIDER: S-EPMC5902190 | biostudies-literature | 2017 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA