Unknown

Dataset Information

0

A survey of functional genomic variation in domesticated chickens.


ABSTRACT: BACKGROUND:Deleterious genetic variation can increase in frequency as a result of mutations, genetic drift, and genetic hitchhiking. Although individual effects are often small, the cumulative effect of deleterious genetic variation can impact population fitness substantially. In this study, we examined the genome of commercial purebred chicken lines for deleterious and functional variations, combining genotype and whole-genome sequence data. RESULTS:We analysed over 22,000 animals that were genotyped on a 60 K SNP chip from four purebred lines (two white egg and two brown egg layer lines) and two crossbred lines. We identified 79 haplotypes that showed a significant deficit in homozygous carriers. This deficit was assumed to stem from haplotypes that potentially harbour lethal recessive variations. To identify potentially deleterious mutations, a catalogue of over 10 million variants was derived from 250 whole-genome sequenced animals from three purebred white-egg layer lines. Out of 4219 putative deleterious variants, 152 mutations were identified that likely induce embryonic lethality in the homozygous state. Inferred deleterious variation showed evidence of purifying selection and deleterious alleles were generally overrepresented in regions of low recombination. Finally, we found evidence that mutations, which were inferred to be evolutionally intolerant, likely have positive effects in commercial chicken populations. CONCLUSIONS:We present a comprehensive genomic perspective on deleterious and functional genetic variation in egg layer breeding lines, which are under intensive selection and characterized by a small effective population size. We show that deleterious variation is subject to purifying selection and that there is a positive relationship between recombination rate and purging efficiency. In addition, multiple putative functional coding variants were discovered in selective sweep regions, which are likely under positive selection. Together, this study provides a unique molecular perspective on functional and deleterious variation in commercial egg-laying chickens, which can enhance current genomic breeding practices to lower the frequency of undesirable variants in the population.

SUBMITTER: Derks MFL 

PROVIDER: S-EPMC5902831 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Background</h4>Deleterious genetic variation can increase in frequency as a result of mutations, genetic drift, and genetic hitchhiking. Although individual effects are often small, the cumulative effect of deleterious genetic variation can impact population fitness substantially. In this study, we examined the genome of commercial purebred chicken lines for deleterious and functional variations, combining genotype and whole-genome sequence data.<h4>Results</h4>We analysed over 22,000 animal  ...[more]

Similar Datasets

| S-EPMC3297523 | biostudies-literature
| S-EPMC5381777 | biostudies-literature
| S-EPMC4972930 | biostudies-literature
| S-EPMC4722816 | biostudies-literature
| S-EPMC6327055 | biostudies-literature
2017-01-04 | PXD000982 | Pride
| S-EPMC10187179 | biostudies-literature
| S-EPMC10630549 | biostudies-literature
| S-EPMC2887405 | biostudies-literature
2016-03-01 | GSE72169 | GEO