Unknown

Dataset Information

0

Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes.


ABSTRACT: Ammonia-oxidising archaea (AOA) are ubiquitous and abundant in nature and play a major role in nitrogen cycling. AOA have been studied intensively based on the amoA gene (encoding ammonia monooxygenase subunit A), making it the most sequenced functional marker gene. Here, based on extensive phylogenetic and meta-data analyses of 33,378 curated archaeal amoA sequences, we define a highly resolved taxonomy and uncover global environmental patterns that challenge many earlier generalisations. Particularly, we show: (i) the global frequency of AOA is extremely uneven, with few clades dominating AOA diversity in most ecosystems; (ii) characterised AOA do not represent most predominant clades in nature, including soils and oceans; (iii) the functional role of the most prevalent environmental AOA clade remains unclear; and (iv) AOA harbour molecular signatures that possibly reflect phenotypic traits. Our work synthesises information from a decade of research and provides the first integrative framework to study AOA in a global context.

SUBMITTER: Alves RJE 

PROVIDER: S-EPMC5904100 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes.

Alves Ricardo J Eloy RJE   Minh Bui Quang BQ   Urich Tim T   von Haeseler Arndt A   Schleper Christa C  

Nature communications 20180417 1


Ammonia-oxidising archaea (AOA) are ubiquitous and abundant in nature and play a major role in nitrogen cycling. AOA have been studied intensively based on the amoA gene (encoding ammonia monooxygenase subunit A), making it the most sequenced functional marker gene. Here, based on extensive phylogenetic and meta-data analyses of 33,378 curated archaeal amoA sequences, we define a highly resolved taxonomy and uncover global environmental patterns that challenge many earlier generalisations. Parti  ...[more]

Similar Datasets

| S-EPMC3328746 | biostudies-literature
| S-EPMC5643298 | biostudies-literature
| S-EPMC9072212 | biostudies-literature
| S-EPMC4500144 | biostudies-literature
| S-EPMC3131854 | biostudies-literature
| S-EPMC5767755 | biostudies-literature
| S-EPMC9859776 | biostudies-literature
| S-EPMC4459192 | biostudies-literature
| S-EPMC7989807 | biostudies-literature
| S-EPMC3585293 | biostudies-literature