Assessing the quality of supplementary sensory feedback using the crossmodal congruency task.
Ontology highlight
ABSTRACT: Advanced neural interfaces show promise in making prosthetic limbs more biomimetic and ultimately more intuitive and useful for patients. However, approaches to assess these emerging technologies are limited in scope and the insight they provide. When outfitting a prosthesis with a feedback system, such as a peripheral nerve interface, it would be helpful to quantify its physiological correspondence, i.e. how well the prosthesis feedback mimics the perceived feedback in an intact limb. Here we present an approach to quantify this aspect of feedback quality using the crossmodal congruency effect (CCE) task. We show that CCE scores are sensitive to feedback modality, an important characteristic for assessment purposes, but are confounded by the spatial separation between the expected and perceived location of a stimulus. Using data collected from 60 able-bodied participants trained to control a bypass prosthesis, we present a model that results in adjusted-CCE scores that are unaffected by percept misalignment which may result from imprecise neural stimulation. The adjusted-CCE score serves as a proxy for a feedback modality's physiological correspondence or 'naturalness'. This quantification approach gives researchers a tool to assess an aspect of emerging augmented feedback systems that is not measurable with current motor assessments.
SUBMITTER: Blustein D
PROVIDER: S-EPMC5906608 | biostudies-literature | 2018 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA