Unknown

Dataset Information

0

Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers.


ABSTRACT: Discovering how membrane proteins recognize signals and passage molecules remains challenging. Life depends on compartmentalizing these processes into dynamic lipid bilayers that are technically difficult to work with. Several polymers have proven adept at separating the responsible machines intact for detailed analysis of their structures and interactions. Styrene maleic acid (SMA) co-polymers efficiently solubilize membranes into native nanodiscs and, unlike amphipols and membrane scaffold proteins, require no potentially destabilizing detergents. Here we review progress with the SMA lipid particle (SMALP) system and its impacts including three dimensional structures and biochemical functions of peripheral and transmembrane proteins. Polymers systems are emerging to tackle the remaining challenges for wider use and future applications including in membrane proteomics, structural biology of transient or unstable states, and discovery of ligand and drug-like molecules specific for native lipid-bound states.

SUBMITTER: Esmaili M 

PROVIDER: S-EPMC5908709 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers.

Esmaili Mansoore M   Overduin Michael M  

Biochimica et biophysica acta. Biomembranes 20171019 2


Discovering how membrane proteins recognize signals and passage molecules remains challenging. Life depends on compartmentalizing these processes into dynamic lipid bilayers that are technically difficult to work with. Several polymers have proven adept at separating the responsible machines intact for detailed analysis of their structures and interactions. Styrene maleic acid (SMA) co-polymers efficiently solubilize membranes into native nanodiscs and, unlike amphipols and membrane scaffold pro  ...[more]

Similar Datasets

| S-EPMC6035298 | biostudies-literature
| S-EPMC5103014 | biostudies-literature
| S-EPMC9821473 | biostudies-literature
| S-EPMC7307199 | biostudies-literature
| S-EPMC7303149 | biostudies-literature
| S-EPMC2837776 | biostudies-literature
| S-EPMC7086155 | biostudies-literature
| S-EPMC4271668 | biostudies-literature
| S-EPMC8752516 | biostudies-literature
| S-EPMC8280715 | biostudies-literature