Unknown

Dataset Information

0

Empirical mode decomposition processing to improve multifocal-visual-evoked-potential signal analysis in multiple sclerosis.


ABSTRACT: To study the performance of multifocal-visual-evoked-potential (mfVEP) signals filtered using empirical mode decomposition (EMD) in discriminating, based on amplitude, between control and multiple sclerosis (MS) patient groups, and to reduce variability in interocular latency in control subjects.MfVEP signals were obtained from controls, clinically definitive MS and MS-risk progression patients (radiologically isolated syndrome (RIS) and clinically isolated syndrome (CIS)). The conventional method of processing mfVEPs consists of using a 1-35 Hz bandpass frequency filter (XDFT). The EMD algorithm was used to decompose the XDFT signals into several intrinsic mode functions (IMFs). This signal processing was assessed by computing the amplitudes and latencies of the XDFT and IMF signals (XEMD). The amplitudes from the full visual field and from ring 5 (9.8-15° eccentricity) were studied. The discrimination index was calculated between controls and patients. Interocular latency values were computed from the XDFT and XEMD signals in a control database to study variability.Using the amplitude of the mfVEP signals filtered with EMD (XEMD) obtains higher discrimination index values than the conventional method when control, MS-risk progression (RIS and CIS) and MS subjects are studied. The lowest variability in interocular latency computations from the control patient database was obtained by comparing the XEMD signals with the XDFT signals. Even better results (amplitude discrimination and latency variability) were obtained in ring 5 (9.8-15° eccentricity of the visual field).Filtering mfVEP signals using the EMD algorithm will result in better identification of subjects at risk of developing MS and better accuracy in latency studies. This could be applied to assess visual cortex activity in MS diagnosis and evolution studies.

SUBMITTER: de Santiago L 

PROVIDER: S-EPMC5909914 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Empirical mode decomposition processing to improve multifocal-visual-evoked-potential signal analysis in multiple sclerosis.

de Santiago Luis L   Sánchez-Morla Eva E   Blanco Román R   Miguel Juan Manuel JM   Amo Carlos C   Ortiz Del Castillo Miguel M   López Almudena A   Boquete Luciano L  

PloS one 20180420 4


<h4>Objective</h4>To study the performance of multifocal-visual-evoked-potential (mfVEP) signals filtered using empirical mode decomposition (EMD) in discriminating, based on amplitude, between control and multiple sclerosis (MS) patient groups, and to reduce variability in interocular latency in control subjects.<h4>Methods</h4>MfVEP signals were obtained from controls, clinically definitive MS and MS-risk progression patients (radiologically isolated syndrome (RIS) and clinically isolated synd  ...[more]

Similar Datasets

| S-EPMC5929517 | biostudies-literature
| S-EPMC6090668 | biostudies-literature
| S-EPMC8367589 | biostudies-literature
| S-EPMC8710482 | biostudies-literature
| S-EPMC6093840 | biostudies-other
| S-EPMC6280853 | biostudies-literature
| S-EPMC4098874 | biostudies-literature
| S-EPMC3031498 | biostudies-literature
| S-EPMC7059768 | biostudies-literature
| S-EPMC6448348 | biostudies-literature