Does intrauterine crowding affect locomotor development? A comparative study of motor performance, neuromotor maturation and gait variability among piglets that differ in birth weight and vitality.
Ontology highlight
ABSTRACT: In polytocous species, such as pigs, the growth of an individual fetus is affected by competition from its littermates and the sow. This intrauterine competition greatly influences postnatal traits such as birth weight and vitality (physical strength). A lowered vitality is most often observed among low birth weight piglets. Since it has been argued that locomotion might be key to unraveling vitality-related differences, we compared gait development in piglets with a low birth weight and low vitality (L piglets) with piglets with a normal birth weight and normal vitality (N piglets) by means of spatio-temporal gait analysis during locomotion at self-selected speed. Video recordings of L and N piglets walking along a corridor at ten time points (between birth and 96 h after birth) were made and the footfalls were digitized. Hence, self-selected speed, spatio-temporal characteristics and gait symmetry were analyzed to compare motor performance, neuromotor maturation (motor task, interlimb and intralimb coordination) and gait variability for L and N piglets. The analysis included both absolute and normalized data (according to the dynamic similarity concept), to distinguish neuromotor maturation from effects caused by growth. Results indicate that intrauterine crowding affects locomotion, mainly by impairing growth in utero, with a lowered motor performance during the first 96 h of age as a consequence. A difference in neuromotor skills was also visible, though only for swing and stance duration, implying a difference in neuromotor development in utero. However, further maturation during the first days after birth does not seem to be affected by intrauterine crowding. We can therefore conclude that L piglets might be considered a smaller and fictitious younger version of N piglets.
SUBMITTER: Vanden Hole C
PROVIDER: S-EPMC5915318 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
ACCESS DATA