Unknown

Dataset Information

0

Ibrutinib inhibition of ERBB4 reduces cell growth in a WNT5A-dependent manner.


ABSTRACT: Alterations in ERBB family members have been associated with many tumor malignancies. EGFR and ERBB2 have been extensively explored in clinical oncology and several drugs currently target them therapeutically. However, the significance of ERBB4 as a potential therapeutic target remains mostly unexplored, even though ERBB4 is overexpressed or mutated in many solid tumors. Using a unique functional protein microarray platform, we found that ibrutinib inhibits ERBB4 activity in the same nM range as its canonical target, BTK. Cell-based assays revealed that ibrutinib treatment inhibited cell growth and decreased phosphorylation of ERBB4 and downstream targets MEK and ERK in cancer cell lines with high levels of endogenous ERBB4. In vivo, ibrutinib-responsive mouse xenograft tumors showed decreased tumor volumes with ibrutinib treatment. Interestingly, global gene expression comparisons between responsive and non-responsive cells identified a signature featuring the WNT pathway that predicts growth responsiveness to ibrutinib. Non-responsive ERBB4-expressing cell lines featured elevated activity of the WNT pathway, through the overexpression of WNT5A. Moreover, inhibition of WNT5A expression led to an ibrutinib response in non-responsive cell lines. Our data show that inhibiting ERBB4 reduces cell growth in cells that have low WNT5A expression and reveal a link between the ERBB4 and WNT pathways.

SUBMITTER: Rauf F 

PROVIDER: S-EPMC5916919 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ibrutinib inhibition of ERBB4 reduces cell growth in a WNT5A-dependent manner.

Rauf Femina F   Festa Fernanda F   Park Jin G JG   Magee Mitchell M   Eaton Seron S   Rinaldi Capria C   Betanzos Carlos Morales CM   Gonzalez-Malerva Laura L   LaBaer Joshua J  

Oncogene 20180205 17


Alterations in ERBB family members have been associated with many tumor malignancies. EGFR and ERBB2 have been extensively explored in clinical oncology and several drugs currently target them therapeutically. However, the significance of ERBB4 as a potential therapeutic target remains mostly unexplored, even though ERBB4 is overexpressed or mutated in many solid tumors. Using a unique functional protein microarray platform, we found that ibrutinib inhibits ERBB4 activity in the same nM range as  ...[more]

Similar Datasets

| S-EPMC5973864 | biostudies-other
| S-EPMC4958238 | biostudies-literature
2018-02-07 | GSE102744 | GEO
| S-EPMC3668845 | biostudies-other
| S-EPMC5303268 | biostudies-literature
| S-EPMC2759712 | biostudies-literature
| S-EPMC6118216 | biostudies-literature
| S-EPMC1698536 | biostudies-literature
| S-EPMC6132956 | biostudies-literature
| S-EPMC8177787 | biostudies-literature