Unknown

Dataset Information

0

Discovery of a Small Molecule Probe That Post-Translationally Stabilizes the Survival Motor Neuron Protein for the Treatment of Spinal Muscular Atrophy.


ABSTRACT: Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.

SUBMITTER: Rietz A 

PROVIDER: S-EPMC5920559 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Discovery of a Small Molecule Probe That Post-Translationally Stabilizes the Survival Motor Neuron Protein for the Treatment of Spinal Muscular Atrophy.

Rietz Anne A   Li Hongxia H   Quist Kevin M KM   Cherry Jonathan J JJ   Lorson Christian L CL   Burnett Barrington G BG   Kern Nicholas L NL   Calder Alyssa N AN   Fritsche Melanie M   Lusic Hrvoje H   Boaler Patrick J PJ   Choi Sungwoon S   Xing Xuechao X   Glicksman Marcie A MA   Cuny Gregory D GD   Androphy Elliot J EJ   Hodgetts Kevin J KJ  

Journal of medicinal chemistry 20170519 11


Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experime  ...[more]

Similar Datasets

| S-EPMC3527959 | biostudies-literature
| S-EPMC5179954 | biostudies-literature
| S-EPMC4090017 | biostudies-literature
2017-04-10 | GSE86908 | GEO
| S-EPMC3696827 | biostudies-other
| S-EPMC3845193 | biostudies-literature
| S-EPMC5725447 | biostudies-literature
| S-EPMC5747328 | biostudies-literature
| S-EPMC2853768 | biostudies-literature
| S-EPMC5487291 | biostudies-literature