Project description:Waldenström macroglobulinemia is often an indolent disorder, and many patients are candidates for observation with careful monitoring. For symptomatic patients, one must distinguish between those patients whose symptoms are related to immunologic manifestations associated with the IgM monoclonal protein and those that have symptoms related to progressive marrow and nodal infiltration with lymphoplasmacytic lymphoma. In Waldenström macroglobulinemia, the driver for therapy in the majority of patients is progressive anemia, secondary to bone marrow replacement by lymphoplasmacytic lymphoma. Recent introduction of MYD88 mutational analysis has been very useful for diagnostic purposes but is unclear what effect it might have on the prognosis or response rate to therapy. An algorithm is provided on the management of asymptomatic individuals and the sequence used for chemotherapeutic intervention of symptomatic patients.
Project description:Thalidomide enhances rituximab-mediated, antibody-dependent, cell-mediated cytotoxicity. We therefore conducted a phase 2 study using thalidomide and rituximab in symptomatic Waldenstrom macroglobulinemia (WM) patients naive to either agent. Intended therapy consisted of daily thalidomide (200 mg for 2 weeks, then 400 mg for 50 weeks) and rituximab (375 mg/m(2) per week) dosed on weeks 2 to 5 and 13 to 16. Twenty-five patients were enrolled, 20 of whom were untreated. Responses were complete response (n = 1), partial response (n = 15), and major response (n = 2), for overall and major response rate of 72% and 64%, respectively, on an intent-to-treat basis. Median serum IgM decreased from 3670 to 1590 mg/dL (P < .001), whereas median hematocrit rose from 33.0% to 37.6% (P = .004) at best response. Median time to progression for responders was 38 months. Peripheral neuropathy to thalidomide was the most common adverse event. Among 11 patients experiencing grade 2 or greater neuropathy, 10 resolved to grade 1 or less at a median of 6.7 months. Thalidomide in combination with rituximab is active and produces long-term responses in WM. Lower doses of thalidomide (ie, <or= 200 mg/day) should be considered given the high frequency of treatment-related neuropathy in this patient population. This trial is registered at www.clinicaltrials.gov as #NCT00142116.
Project description:PurposeBCL2 is overexpressed and confers prosurvival signaling in malignant lymphoplasmacytic cells in Waldenström macroglobulinemia (WM). Venetoclax is a potent BCL2 antagonist and triggers in vitro apoptosis of WM cells. The activity of venetoclax in WM remains to be clarified.Patients and methodsWe performed a multicenter, prospective phase II study of venetoclax in patients with previously treated WM (NCT02677324). Venetoclax was dose-escalated from 200 mg to a maximum dose of 800 mg daily for up to 2 years.ResultsThirty-two patients were evaluable, including 16 previously exposed to Bruton tyrosine kinase inhibitors (BTKis). All patients were MYD88 L265P-mutated, and 17 carried CXCR4 mutations. The median time to minor and major responses was 1.9 and 5.1 months, respectively. Previous exposure to BTKis was associated with a longer time to response (4.5 v 1.4 months; P < .001). The overall, major, and very good partial response rates were 84%, 81%, and 19%, respectively. The major response rate was lower in those with refractory versus relapsed disease (50% v 95%; P = .007). The median follow-up time was 33 months, and the median progression-free survival was 30 months. CXCR4 mutations did not affect treatment response or progression-free survival. The only recurring grade ≥ 3 treatment-related adverse event was neutropenia (n = 14; 45%), including one episode of febrile neutropenia. Laboratory tumor lysis without clinical sequelae occurred in one patient. No deaths have occurred.ConclusionVenetoclax is safe and highly active in patients with previously treated WM, including those who previously received BTKis. CXCR4 mutation status did not affect treatment response.
Project description:The management of Waldenström macroglobulinemia (WM) has evolved tremendously with recent genomic discoveries that correlate with clinical presentation and could help to tailor treatment approaches. The current diagnosis of WM requires clinicopathological criteria, including bone marrow involvement by lymphoplasmacytic lymphoma cells, a serum immunoglobulin M (IgM) monoclonal paraprotein, and presence of the MYD88 L265P mutation. Once the diagnosis is established, the relationship between the patient's symptoms and WM should be carefully investigated, because therapy should be reserved for symptomatic patients. Bone marrow involvement and serum levels of IgM, albumin, and β2-microglobulin can be used to estimate the time until treatment initiation. The treatment of WM patients should be highly personalized, and the patient's clinical presentation, comorbidities, genomic profile, and preferences, as well as toxicity of the treatment regimens, should be taken into account. Alkylating agents (bendamustine, cyclophosphamide), proteasome inhibitors (bortezomib, carfilzomib, ixazomib), anti-CD20 monoclonal antibodies (rituximab, ofatumumab), and Bruton tyrosine kinase (BTK) inhibitors (ibrutinib, acalabrutinib, zanubrutinib) are safe and highly effective treatment options in patients with WM. Because novel covalent and noncovalent BTK inhibitors (tirabrutinib, vecabrutinib, LOXO-305, ARQ-531), BCL2 antagonists (venetoclax), and CXCR4-targeting agents (ulocuplumab, mavorixafor) are undergoing clinical development in WM, the future of WM therapy certainly appears bright and hopeful.
Project description:Bruton's tyrosine kinase (BTK) is a key mediator of BCR-dependent cell growth signaling and a clinically effective therapeutic target in mantle cell lymphoma (MCL). The molecular impact of BTK inhibition remains unclear particularly in hematopoietic malignancies. We analyzed the molecular mechanisms of BTK inhibition with the novel inhibitor BGB-3111 (zanubrutinib) in MCL models. The efficacy of BGB-3111 was investigated using growth proliferation/cell viability and apoptosis assays in MCL cell lines and patient-derived xenograft (PDX) MCL cells. The activity and mechanisms of BGB-3111 were further confirmed using a cell line xenograft model, an MCL PDX mouse model, and a human phosphokinase profiler array and reverse phase protein array. Finally, the mechanisms related to resistance to BTK inhibition were analyzed by creating cell lines with low levels of BTK using CRISPR/Cas 9 genome editing. We found that inhibition of BTK leads to suppression of tumor growth, which was mediated via potent suppression of AKT/mTOR, apoptosis, and metabolic stress. Moreover, targeted disruption of the BTK gene in MCL cells resulted in resistance to BTK inhibition and the emergence of novel survival mechanisms. Our studies suggest a general efficacy of BTK inhibition in MCL and potential drug resistance mechanism via alternative signaling pathways.
Project description:Zanubrutinib (BGB-3111) is a next-generation Bruton tyrosine kinase inhibitor designed to be more selective with fewer off-target effects. We conducted a phase 1 study to assess the safety of its combination with obinutuzumab and evaluate early efficacy in 81 patients with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) or relapsed/refractory (R/R) follicular lymphoma (FL). In this phase 1b study, zanubrutinib was tolerable at 160 mg twice daily or 320 mg once daily combined with IV obinutuzumab in patients with CLL/SLL (n = 45) and FL (n = 36). Common adverse events (AEs) included upper respiratory tract infection (51%; n = 23), neutropenia (44%; n = 20), contusion (33%; n = 15), cough, diarrhea, or fatigue (27%; n = 12 each), and pyrexia (22%; n = 10) in CLL/SLL patients and upper respiratory tract infection (39%; n = 14), contusion (28%; n = 10), fatigue (25%; n = 9), and cough (22%; n = 8) in FL patients. Neutropenia was the most common grade 3/4 AE (CLL/SLL, 31% [n = 14]; FL, 14% [n = 5]). Five patients required temporary dose reductions, and 5 discontinued the study drug because of AEs. Overall response rate (ORR) was 100% (n = 20) in treatment-naïve CLL patients and 92% (n = 23) in R/R CLL patients. ORR in 36 R/R FL patients was 72% (n = 26), with 14 complete and 12 partial responses. Median follow-up was 29 months (range, 8-37) for CLL patients and 20 months (range, 2-37) for FL patients. Zanubrutinib and obinutuzumab combination therapy was generally well tolerated. This trial was registered at www.clinicaltrials.gov as #NCT02569476.
Project description:With the introduction of multiple new effective therapeutic options for the treatment of macroglobulinemia, a structured approach to management of this rare lymphoma is currently needed. A review of phase II and III treatment trials over the past 20 years was performed, and high-quality trials are summarized in this manuscript. Because of the lack of large prospective trials comparing different classes of therapy, a uniform recommendation applicable to all patients cannot be made, and the approach must be individualized incorporating patient preferences, comorbidities, and the range of therapeutic toxicities. Therapeutic options for patients with newly diagnosed and previously treated macroglobulinemia are presented on the basis of the best available evidence in the literature.
Project description:Understanding the biology of Waldenström macroglobulinemia is hindered by a lack of preclinical models. We report a novel cell line, RPCI-WM1, from a patient treated for WM. The cell line secretes human immunoglobulin M (h-IgM) with ?-light chain restriction identical to the primary tumor. The cell line has a modal chromosomal number of 46 and harbors chromosomal changes such as deletion of 6q21, monoallelic deletion of 9p21 (CDKN2A), 13q14 (RB1) and 18q21 (BCL-2), with a consistent amplification of 14q32 (immunoglobulin heavy chain; IgH) identical to its founding tumor sample. The clonal relationship is confirmed by identical CDR3 length and single nucleotide polymorphisms as well as a matching IgH sequence of the cell line and founding tumor. Both also harbor a heterozygous, non-synonymous mutation at amino acid 265 in the MYD88 gene (L265P). The cell line expresses most of the cell surface markers present on the parent cells. Overall, RPCI-WM1 represents a valuable model to study Waldenström macroglobulinemia.
Project description:Waldenström macroglobulinemia (WM) is a rare, immunoglobulin M -associated lymphoplasmacytic lymphoma. With the recent discoveries of CXCR warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) and MYD88 mutations, our understanding of the biology of WM has expanded substantially. While WM still remains incurable, the field is rapidly evolving, and a number of promising agents with significant activity in this malignancy are being evaluated currently. In this review, we discuss the new developments that have occurred in WM over the past 15 years, with a focus on the role of ibrutinib, an oral Bruton's tyrosine kinase inhibitor that has recently been approved for WM in the United States, Europe, and Canada.