Unknown

Dataset Information

0

Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase.


ABSTRACT: Novel therapeutic means against Staphylococcus aureus infections are urgently needed due to the emergence of drug-resistant S. aureus. We report the development of a CRISPR RNA-guided cytidine deaminase (pnCasSA-BEC), enabling highly efficient gene inactivation and point mutations in S. aureus. We engineered a fusion of a Cas9 nickase (Cas9D10A) and a cytidine deaminase (APOBEC1) that can be guided to a target genomic locus for gene inactivation via generating a premature stop codon. The pnCasSA-BEC system nicks the non-edited strand of the genomic DNA, directly catalyzes the conversion of cytidine (C) to uridine (U), and relies on DNA replication to achieve C ? T (G ? A) conversion without using donor repair templates. The development of the base-editing system will dramatically accelerate drug-target exploration in S. aureus and provides critical insights into the development of base-editing tools in other microbes.

SUBMITTER: Gu T 

PROVIDER: S-EPMC5932532 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Highly efficient base editing in <i>Staphylococcus aureus</i> using an engineered CRISPR RNA-guided cytidine deaminase.

Gu Tongnian T   Zhao Siqi S   Pi Yishuang Y   Chen Weizhong W   Chen Chuanyuan C   Liu Qian Q   Li Min M   Han Dali D   Ji Quanjiang Q  

Chemical science 20180222 12


Novel therapeutic means against <i>Staphylococcus aureus</i> infections are urgently needed due to the emergence of drug-resistant <i>S. aureus</i>. We report the development of a CRISPR RNA-guided cytidine deaminase (pnCasSA-BEC), enabling highly efficient gene inactivation and point mutations in <i>S. aureus</i>. We engineered a fusion of a Cas9 nickase (Cas9D10A) and a cytidine deaminase (APOBEC1) that can be guided to a target genomic locus for gene inactivation <i>via</i> generating a prema  ...[more]

Similar Datasets

| S-EPMC8692370 | biostudies-literature
| S-EPMC7381381 | biostudies-literature
| S-EPMC6123677 | biostudies-literature
| S-EPMC6137401 | biostudies-literature
| S-EPMC6238054 | biostudies-literature
| S-EPMC5388574 | biostudies-literature
2018-03-18 | GSE110136 | GEO
| S-EPMC6048098 | biostudies-literature
| S-EPMC7430721 | biostudies-literature
2018-10-16 | GSE105002 | GEO