Unknown

Dataset Information

0

Glycine N-methyltransferase inhibits aristolochic acid nephropathy by increasing CYP3A44 and decreasing NQO1 expression in female mouse hepatocytes.


ABSTRACT: Plants containing aristolochic acids (AA) are nephrotoxins. Glycine N-methyltransferase (GNMT) acts to bind environmental toxins such as benzo(a)pyrene and aflatoxin B1, translocate into nucleus, and alter hepatic metabolism. This study aims to determine the role of GNMT in AA-induced nephropathy. We established an AA nephropathy mouse model and found that AA type I (AAI)-induced nephropathy at a lower concentration in male than in female mice, implying sex differences in AAI resistance. Microarray analysis and AAI-treated mouse models showed that GNMT moderately reduced AAI-induced nephropathy by lowering the upregulated level of NQO1 in male, but significantly improved the nephropathy additionally by increasing Cyp3A44/3A41 in female. The protective effects of GNMT were absent in female GNMT knockout mice, in which re-expression of hepatic GNMT significantly decreased AAI-induced nephropathy. Mechanism-wise, AAI enhanced GNMT nuclear translocation, resulting in GNMT interaction with the promoter region of the genes encoding Nrf2 and CAR/PXR, the transcription factors for NQO1 and CYP3A44/3A41, respectively. Unlike the preference for Nrf2/NQO1 transcriptions at lower levels of GNMT, overexpression of GNMT preferred CAR/PXR/CYP3A44/3A41 transcriptions and alleviated kidney injury upon AAI treatment. In summary, hepatic GNMT protected mice from AAI nephropathy by enhancing CAR/PXR/CYP3A44/3A41 transcriptions and reducing Nrf2/NQO1 transcriptions.

SUBMITTER: Chang MM 

PROVIDER: S-EPMC5934382 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Glycine N-methyltransferase inhibits aristolochic acid nephropathy by increasing CYP3A44 and decreasing NQO1 expression in female mouse hepatocytes.

Chang Ming-Min MM   Lin Chang-Ni CN   Fang Cheng-Chieh CC   Chen Marcelo M   Liang Peir-In PI   Li Wei-Ming WM   Yeh Bi-Wen BW   Cheng Hung-Chi HC   Huang Bu-Miin BM   Wu Wen-Jeng WJ   Chen Yi-Ming Arthur YA  

Scientific reports 20180503 1


Plants containing aristolochic acids (AA) are nephrotoxins. Glycine N-methyltransferase (GNMT) acts to bind environmental toxins such as benzo(a)pyrene and aflatoxin B1, translocate into nucleus, and alter hepatic metabolism. This study aims to determine the role of GNMT in AA-induced nephropathy. We established an AA nephropathy mouse model and found that AA type I (AAI)-induced nephropathy at a lower concentration in male than in female mice, implying sex differences in AAI resistance. Microar  ...[more]

Similar Datasets

| S-EPMC4494914 | biostudies-literature
| S-EPMC1913550 | biostudies-literature
2018-05-09 | GSE101530 | GEO
| S-EPMC1223502 | biostudies-other
| S-EPMC4905443 | biostudies-literature
| S-EPMC4673200 | biostudies-literature
| S-EPMC9876410 | biostudies-literature
| S-EPMC7847048 | biostudies-literature
2024-03-31 | GSE228516 | GEO
| S-EPMC5171868 | biostudies-literature