Unknown

Dataset Information

0

Human CLASP2 specifically regulates microtubule catastrophe and rescue.


ABSTRACT: Cytoplasmic linker-associated proteins (CLASPs) are microtubule-associated proteins essential for microtubule regulation in many cellular processes. However, the molecular mechanisms underlying CLASP activity are not understood. Here, we use purified protein components and total internal reflection fluorescence microscopy to investigate the effects of human CLASP2 on microtubule dynamics in vitro. We demonstrate that CLASP2 suppresses microtubule catastrophe and promotes rescue without affecting the rates of microtubule growth or shrinkage. Strikingly, when CLASP2 is combined with EB1, a known binding partner, the effects on microtubule dynamics are strongly enhanced. We show that synergy between CLASP2 and EB1 is dependent on a direct interaction, since a truncated EB1 protein that lacks the CLASP2-binding domain does not enhance CLASP2 activity. Further, we find that EB1 targets CLASP2 to microtubules and increases the dwell time of CLASP2 at microtubule tips. Although the temporally averaged microtubule growth rates are unaffected by CLASP2, we find that microtubules grown with CLASP2 display greater variability in growth rates. Our results provide insight into the regulation of microtubule dynamics by CLASP proteins and highlight the importance of the functional interplay between regulatory proteins at dynamic microtubule ends.

SUBMITTER: Lawrence EJ 

PROVIDER: S-EPMC5935067 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Human CLASP2 specifically regulates microtubule catastrophe and rescue.

Lawrence Elizabeth J EJ   Arpag Göker G   Norris Stephen R SR   Zanic Marija M  

Molecular biology of the cell 20180322 10


Cytoplasmic linker-associated proteins (CLASPs) are microtubule-associated proteins essential for microtubule regulation in many cellular processes. However, the molecular mechanisms underlying CLASP activity are not understood. Here, we use purified protein components and total internal reflection fluorescence microscopy to investigate the effects of human CLASP2 on microtubule dynamics in vitro. We demonstrate that CLASP2 suppresses microtubule catastrophe and promotes rescue without affecting  ...[more]

Similar Datasets

| S-EPMC5994897 | biostudies-literature
| S-EPMC3489028 | biostudies-literature
| S-EPMC3279392 | biostudies-literature
| S-EPMC8861655 | biostudies-literature
| S-EPMC10011731 | biostudies-literature
| S-EPMC8327381 | biostudies-literature
| S-EPMC4687879 | biostudies-literature
| S-EPMC4646087 | biostudies-literature
| S-EPMC7041679 | biostudies-literature
| S-EPMC3871427 | biostudies-literature