IL-3 but not monomeric IgE regulates Fc?RI levels and cell survival in primary human basophils.
Ontology highlight
ABSTRACT: Binding of allergen-specific IgE to its primary receptor Fc?RI on basophils and mast cells represents a central event in the development of allergic diseases. The high-affinity interaction between IgE and Fc?RI results in permanent sensitization of these allergic effector cells and critically regulates their release of pro-inflammatory mediators upon IgE cross-linking by allergens. In addition, binding of monomeric IgE has been reported to actively regulate Fc?RI surface levels and promote survival of mast cells in the absence of allergen through the induction of autocrine cytokine secretion including interleukin-3 (IL-3). As basophils and mast cells share many biological commonalities we sought to assess the role of monomeric IgE binding and IL-3 signaling in Fc?RI regulation and cell survival of primary human basophils. Fc?RI cell surface levels and survival of isolated blood basophils were assessed upon addition of monomeric IgE or physiologic removal of endogenous cell-bound IgE with a disruptive IgE inhibitor by flow cytometry. We further determined basophil cell numbers in both low and high serum IgE blood donors and mice that are either sufficient or deficient for Fc?RI. Ultimately, we investigated the effect of IL-3 on basophil surface Fc?RI levels by protein and gene expression analysis. Surface levels of Fc?RI were passively stabilized but not actively upregulated in the presence of monomeric IgE. In contrast to previous observations with mast cells, monomeric IgE binding did not enhance basophil survival. Interestingly, we found that IL-3 transcriptionally regulates surface levels of Fc?RI in human primary basophils. Our data suggest that IL-3 but not monomeric IgE regulates Fc?RI expression and cell survival in primary human basophils. Thus, blocking of IL-3 signaling in allergic effector cells might represent an interesting approach to diminish surface Fc?RI levels and to prevent prolonged cell survival in allergic inflammation.
SUBMITTER: Zellweger F
PROVIDER: S-EPMC5938712 | biostudies-literature | 2018 May
REPOSITORIES: biostudies-literature
ACCESS DATA