Learning-Induced Metaplasticity? Associative Training for Early Odor Preference Learning Down-Regulates Synapse-Specific NMDA Receptors via mGluR and Calcineurin Activation.
Ontology highlight
ABSTRACT: Rat pups readily form a 24-h associative odor preference after a single trial of odor paired with intermittent stroking. Recent evidence shows that this training trial, which normally increases AMPA receptor responses in the anterior piriform cortex both 3 and 24 h following training, induces a down-regulation of NMDA receptors 3 h later followed by NMDA receptor up-regulation at 24 h. When retrained with the same odor at 3 h, rat pups unlearn the original odor preference. Unlearning can be prevented by blocking NMDA receptors during retraining. Here, the mechanisms that initiate NMDA receptor down-regulation are assessed. Blocking mGluR receptors or calcineurin during training prevents down-regulation of NMDA receptors 3 h following training. Blocking NMDA receptors during training does not affect NMDA receptor down-regulation. Thus, down-regulation can be engaged separately from associative learning. When unlearning occurs, AMPA and NMDA receptor levels at 24 h are reset to control levels. Calcineurin blockade during retraining prevents unlearning consistent with the role of NMDA receptor down-regulation. The relationship of these events to the metaplasticity and plasticity mechanisms of long-term depression and depotentiation is discussed. We suggest a possible functional role of NMDA receptor down-regulation in offline stabilization of learned odor representations.
SUBMITTER: Mukherjee B
PROVIDER: S-EPMC5939215 | biostudies-literature | 2017 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA