Unknown

Dataset Information

0

Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.


ABSTRACT: Epithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness, and resistance to therapy. Some tumors undergo EMT while others do not, which may reflect intrinsic properties of their cell of origin. However, this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show that cell-type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from interfollicular epidermis (IFE) are generally well differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed that IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.

SUBMITTER: Latil M 

PROVIDER: S-EPMC5939571 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.

Latil Mathilde M   Nassar Dany D   Beck Benjamin B   Boumahdi Soufiane S   Wang Li L   Brisebarre Audrey A   Dubois Christine C   Nkusi Erwin E   Lenglez Sandrine S   Checinska Agnieszka A   Vercauteren Drubbel Alizée A   Devos Michael M   Declercq Wim W   Yi Rui R   Blanpain Cédric C  

Cell stem cell 20161123 2


Epithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness, and resistance to therapy. Some tumors undergo EMT while others do not, which may reflect intrinsic properties of their cell of origin. However, this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show that cell-type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs)  ...[more]

Similar Datasets

2015-10-01 | GSE71621 | GEO
2016-09-01 | E-GEOD-70474 | biostudies-arrayexpress
2016-11-04 | GSE88989 | GEO
2016-10-15 | GSE88762 | GEO
2016-10-15 | GSE87877 | GEO
2016-09-01 | GSE70474 | GEO
| PRJNA291632 | ENA
| S-EPMC3903644 | biostudies-literature
| S-EPMC3189192 | biostudies-literature
| S-EPMC3331719 | biostudies-literature