Unknown

Dataset Information

0

Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination.


ABSTRACT: The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation.

SUBMITTER: Baek C 

PROVIDER: S-EPMC5945229 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination.

Baek Chooyoung C   Freem Lucy L   Goïame Rosette R   Sang Helen H   Morin Xavier X   Tozer Samuel S  

PLoS biology 20180430 4


The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is cl  ...[more]

Similar Datasets

| S-EPMC6365626 | biostudies-literature
| S-EPMC10323766 | biostudies-literature
| S-EPMC8188667 | biostudies-literature
| S-EPMC8857135 | biostudies-literature
| S-EPMC10979875 | biostudies-literature
2015-08-10 | GSE71912 | GEO
2022-07-31 | GSE189762 | GEO
| S-EPMC4286723 | biostudies-literature
2015-08-10 | E-GEOD-71912 | biostudies-arrayexpress
| S-EPMC8277753 | biostudies-literature