Unknown

Dataset Information

0

Magnetoencephalographic study of event-related fields and cortical oscillatory changes during cutaneous warmth processing.


ABSTRACT: Thermoreception is an important cutaneous sense, which plays a role in the maintenance of our body temperature and in the detection of potential noxious heat stimulation. In this study, we investigated event-related fields (ERFs) and neural oscillatory activities, which were modulated by warmth stimulation. We developed a warmth stimulator that could elicit a warmth sensation, without pain or tactile sensation, by using a deep-penetrating 980-nm diode laser. The index finger of each participant (n?=?24) was irradiated with the laser warmth stimulus, and the cortical responses were measured using magnetoencephalography (MEG). The ERFs and oscillatory responses had late latencies (?1.3 s and 1.0-1.5 s for ERFs and oscillatory responses, respectively), which could be explained by a slow conduction velocity of warmth-specific C-fibers. Cortical sources of warmth-related ERFs were seen in the bilateral primary and secondary somatosensory cortices (SI and SII), posterior part of the anterior cingulate cortex (pACC), ipsilateral primary motor, and premotor cortex. Thus, we suggested that SI, SII, and pACC play a role in processing the warmth sensation. Time-frequency analysis demonstrated the suppression of the alpha (8-13 Hz) and beta (18-23 Hz) band power in the bilateral sensorimotor cortex. We proposed that the suppressions in alpha and beta band power are involved in the automatic response to the input of warmth stimulation and sensorimotor interactions. The delta band power (1-4 Hz) increased in the frontal, temporal, and cingulate cortices. The power changes in delta band might be related with the attentional processes during the warmth stimulation.

SUBMITTER: An KM 

PROVIDER: S-EPMC5947665 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Magnetoencephalographic study of event-related fields and cortical oscillatory changes during cutaneous warmth processing.

An Kyung-Min KM   Lim Sanghyun S   Lee Hyun Joon HJ   Kwon Hyukchan H   Kim Min-Young MY   Gohel Bakul B   Kim Ji-Eun JE   Kim Kiwoong K  

Human brain mapping 20180123 5


Thermoreception is an important cutaneous sense, which plays a role in the maintenance of our body temperature and in the detection of potential noxious heat stimulation. In this study, we investigated event-related fields (ERFs) and neural oscillatory activities, which were modulated by warmth stimulation. We developed a warmth stimulator that could elicit a warmth sensation, without pain or tactile sensation, by using a deep-penetrating 980-nm diode laser. The index finger of each participant  ...[more]

Similar Datasets

| S-EPMC2040398 | biostudies-literature
| S-EPMC4800817 | biostudies-literature
| S-EPMC7900569 | biostudies-literature
| S-EPMC8780323 | biostudies-literature
| S-EPMC3319974 | biostudies-literature
| S-EPMC8163957 | biostudies-literature
| S-EPMC5595273 | biostudies-other
| S-EPMC8786737 | biostudies-literature
| S-EPMC9531441 | biostudies-literature
| S-EPMC5703531 | biostudies-literature