Unknown

Dataset Information

0

Utility of inverse probability weighting in molecular pathological epidemiology.


ABSTRACT: As one of causal inference methodologies, the inverse probability weighting (IPW) method has been utilized to address confounding and account for missing data when subjects with missing data cannot be included in a primary analysis. The transdisciplinary field of molecular pathological epidemiology (MPE) integrates molecular pathological and epidemiological methods, and takes advantages of improved understanding of pathogenesis to generate stronger biological evidence of causality and optimize strategies for precision medicine and prevention. Disease subtyping based on biomarker analysis of biospecimens is essential in MPE research. However, there are nearly always cases that lack subtype information due to the unavailability or insufficiency of biospecimens. To address this missing subtype data issue, we incorporated inverse probability weights into Cox proportional cause-specific hazards regression. The weight was inverse of the probability of biomarker data availability estimated based on a model for biomarker data availability status. The strategy was illustrated in two example studies; each assessed alcohol intake or family history of colorectal cancer in relation to the risk of developing colorectal carcinoma subtypes classified by tumor microsatellite instability (MSI) status, using a prospective cohort study, the Nurses' Health Study. Logistic regression was used to estimate the probability of MSI data availability for each cancer case with covariates of clinical features and family history of colorectal cancer. This application of IPW can reduce selection bias caused by nonrandom variation in biospecimen data availability. The integration of causal inference methods into the MPE approach will likely have substantial potentials to advance the field of epidemiology.

SUBMITTER: Liu L 

PROVIDER: S-EPMC5948129 | biostudies-literature | 2018 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Utility of inverse probability weighting in molecular pathological epidemiology.

Liu Li L   Nevo Daniel D   Nishihara Reiko R   Cao Yin Y   Song Mingyang M   Twombly Tyler S TS   Chan Andrew T AT   Giovannucci Edward L EL   VanderWeele Tyler J TJ   Wang Molin M   Ogino Shuji S  

European journal of epidemiology 20171220 4


As one of causal inference methodologies, the inverse probability weighting (IPW) method has been utilized to address confounding and account for missing data when subjects with missing data cannot be included in a primary analysis. The transdisciplinary field of molecular pathological epidemiology (MPE) integrates molecular pathological and epidemiological methods, and takes advantages of improved understanding of pathogenesis to generate stronger biological evidence of causality and optimize s  ...[more]

Similar Datasets

| S-EPMC4006991 | biostudies-literature
| S-EPMC3777387 | biostudies-literature
| S-EPMC8793316 | biostudies-literature
| S-EPMC6051732 | biostudies-literature
| S-EPMC5882514 | biostudies-literature
| S-EPMC7162718 | biostudies-literature
| S-EPMC6238364 | biostudies-literature
| S-EPMC4983650 | biostudies-literature
| S-EPMC11002333 | biostudies-literature
| S-EPMC7433845 | biostudies-literature