Unknown

Dataset Information

0

Enhancement of CO2 Uptake and Selectivity in a Metal-Organic Framework by the Incorporation of Thiophene Functionality.


ABSTRACT: The complex [Zn2(tdc)2dabco] (H2tdc = thiophene-2,5-dicarboxylic acid; dabco = 1,4-diazabicyclooctane) shows a remarkable increase in carbon dioxide (CO2) uptake and CO2/dinitrogen (N2) selectivity compared to the nonthiophene analogue [Zn2(bdc)2dabco] (H2bdc = benzene-1,4-dicarboxylic acid; terephthalic acid). CO2 adsorption at 1 bar for [Zn2(tdc)2dabco] is 67.4 cm3·g-1 (13.2 wt %) at 298 K and 153 cm3·g-1 (30.0 wt %) at 273 K. For [Zn2(bdc)2dabco], the equivalent values are 46 cm3·g-1 (9.0 wt %) and 122 cm3·g-1 (23.9 wt %), respectively. The isosteric heat of adsorption for CO2 in [Zn2(tdc)2dabco] at zero coverage is low (23.65 kJ·mol-1), ensuring facile regeneration of the porous material. Enhancement by the thiophene group on the separation of CO2/N2 gas mixtures has been confirmed by both ideal adsorbate solution theory calculations and dynamic breakthrough experiments. The preferred binding sites of adsorbed CO2 in [Zn2(tdc)2dabco] have been unambiguously determined by in situ single-crystal diffraction studies on CO2-loaded [Zn2(tdc)2dabco], coupled with quantum-chemical calculations. These studies unveil the role of the thiophene moieties in the specific CO2 binding via an induced dipole interaction between CO2 and the sulfur center, confirming that an enhanced CO2 capacity in [Zn2(tdc)2dabco] is achieved without the presence of open metal sites. The experimental data and theoretical insight suggest a viable strategy for improvement of the adsorption properties of already known materials through the incorporation of sulfur-based heterocycles within their porous structures.

SUBMITTER: Bolotov VA 

PROVIDER: S-EPMC5951605 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhancement of CO<sub>2</sub> Uptake and Selectivity in a Metal-Organic Framework by the Incorporation of Thiophene Functionality.

Bolotov Vsevolod A VA   Kovalenko Konstantin A KA   Samsonenko Denis G DG   Han Xue X   Zhang Xinran X   Smith Gemma L GL   McCormick Laura J LJ   Teat Simon J SJ   Yang Sihai S   Lennox Matthew J MJ   Henley Alice A   Besley Elena E   Fedin Vladimir P VP   Dybtsev Danil N DN   Schröder Martin M  

Inorganic chemistry 20180423 9


The complex [Zn<sub>2</sub>(tdc)<sub>2</sub>dabco] (H<sub>2</sub>tdc = thiophene-2,5-dicarboxylic acid; dabco = 1,4-diazabicyclooctane) shows a remarkable increase in carbon dioxide (CO<sub>2</sub>) uptake and CO<sub>2</sub>/dinitrogen (N<sub>2</sub>) selectivity compared to the nonthiophene analogue [Zn<sub>2</sub>(bdc)<sub>2</sub>dabco] (H<sub>2</sub>bdc = benzene-1,4-dicarboxylic acid; terephthalic acid). CO<sub>2</sub> adsorption at 1 bar for [Zn<sub>2</sub>(tdc)<sub>2</sub>dabco] is 67.4 cm  ...[more]

Similar Datasets

| S-EPMC7582736 | biostudies-literature
| S-EPMC6826233 | biostudies-literature
| S-EPMC4451844 | biostudies-other
| S-EPMC10285178 | biostudies-literature
| S-EPMC8233894 | biostudies-literature
| S-EPMC4183619 | biostudies-literature
| S-EPMC6510315 | biostudies-literature
| S-EPMC4445399 | biostudies-literature
| S-EPMC7187261 | biostudies-literature
| S-EPMC9033043 | biostudies-literature