Ontology highlight
ABSTRACT: Background
Biomarker-targeted molecular imaging holds promise for early detection of pancreatic cancer. The aim of this study was to design and evaluate a plectin-1 targeted multi-functional nanoparticle probe for pancreatic cancer imaging.Methods
1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-amino(polyethylene glycol) (DSPE-PEG-NH2)-modified superparamagnetic iron oxide (Fe3O4) nanoparticles (SPION) were conjugated with plectin-1 antibody and/or Cy7 to create the multi-functional targeted nanoparticle targeted probe (Plectin-SPION-Cy7) or non-targeted probe (SPION-Cy7). Pancreatic carcinoma cell lines expressing plectin-1 were cultured with the targeted or control probes and then were imaged using confocal laser scanning microscopy and magnetic resonance imaging (MRI). Accumulations of the nanoparticles in pancreatic tumor xenografted mice were determined by MRI and fluorescence imaging.Results
In vitro optical imaging and MRI showed that the targeted nanoparticles were highly accumulated in MIAPaCa2 and XPA-1 carcinoma cells but not in non-carcinoma MIN6 cells, which was further confirmed by Prussian blue staining. In vivo MRI showed a significant T2 signal reduction. Prussian blue staining further confirmed that the plectin-1 targeted nanoparticles were highly accumulated in the tumor mass but not in normal pancreatic tissues, or in the liver and kidney, and few nanoparticles were observed in the tumors of mice injected with SPION-Cy7.Conclusions
Our data demonstrate that plectin-1 targeted fluorescence and MR dual-functional nanoparticle can visualize pancreatic cancer, and it has great potential to be used with various imaging devices for pancreatic cancer detection.
SUBMITTER: Chen X
PROVIDER: S-EPMC5952251 | biostudies-literature | 2018 Apr
REPOSITORIES: biostudies-literature
Chen Xiao X Zhou Hao H Li Xiaoshuang X Duan Na N Hu Shouyou S Liu Yongkang Y Yue Yali Y Song Lina L Zhang Yifen Y Li Donghui D Wang Zhongqiu Z
EBioMedicine 20180315
<h4>Background</h4>Biomarker-targeted molecular imaging holds promise for early detection of pancreatic cancer. The aim of this study was to design and evaluate a plectin-1 targeted multi-functional nanoparticle probe for pancreatic cancer imaging.<h4>Methods</h4>1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-amino(polyethylene glycol) (DSPE-PEG-NH2)-modified superparamagnetic iron oxide (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles (SPION) were conjugated with plectin-1 antibody and/or Cy7 to ...[more]