In silico physicochemical characterization and topology analysis of Respiratory burst oxidase homolog (Rboh) proteins from Arabidopsis and rice.
Ontology highlight
ABSTRACT: NADPH oxidase (NOX) is a key enzyme involved in the production of apoplastic superoxide (O2-), a type of reactive oxygen species (ROS). Plant Noxes are the homologs of mammalian NADPH oxidase's catalytic subunit and are documented as respiratory burst oxidase homologs (Rbohs). A number of studies have reported their diverse functions in combating various stresses and in plant growth and development. In the present study, a total of 19 Rboh proteins (10 from Arabidopsis thaliana and 9 from Oryza sativa Japonica) were analyzed. We employed in silico approaches to compute the physiochemical properties (molecular weight, isoelectric point, total number of negatively and positively charged residues, extinction coefficient, half-life, instability and aliphatic index, grand average of hydropathicity, amino acid percentage). We observed a lot of variability in these parameters among the Rbohs accounting for their functional diversification. Their topological analysis, subcellular localization and signal peptide detection are also performed. To the best of our knowledge, the present study report on in silico physiochemical characterization, topology analysis, subcellular localization and signal peptide detection of Rboh proteins within two model plants. The study elucidates the variations in the key properties among Rbohs proteins, which may be responsible for their functional multiplicity.
SUBMITTER: Kaur G
PROVIDER: S-EPMC5953861 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
ACCESS DATA