Unknown

Dataset Information

0

Metabolomics based predictive classifier for early detection of pancreatic ductal adenocarcinoma.


ABSTRACT: The availability of robust classification algorithms for the identification of high risk individuals with resectable disease is critical to improving early detection strategies and ultimately increasing survival rates in PC. We leveraged high quality biospecimens with extensive clinical annotations from patients that received treatment at the Medstar-Georgetown University hospital. We used a high resolution mass spectrometry based global tissue profiling approach in conjunction with multivariate analysis for developing a classification algorithm that would predict early stage PC with high accuracy. The candidate biomarkers were annotated using tandem mass spectrometry. We delineated a six metabolite panel that could discriminate early stage PDAC from benign pancreatic disease with >95% accuracy of classification (Specificity = 0.85, Sensitivity = 0.9). Subsequently, we used multiple reaction monitoring mass spectrometry for evaluation of this panel in plasma samples obtained from the same patients. The pattern of expression of these metabolites in plasma was found to be discordant as compared to that in tissue. Taken together, our results show the value of using a metabolomics approach for developing highly predictive panels for classification of early stage PDAC. Future investigations will likely lead to the development of validated biomarker panels with potential for clinical translation in conjunction with CA-19-9 and/or other biomarkers.

SUBMITTER: Unger K 

PROVIDER: S-EPMC5955422 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metabolomics based predictive classifier for early detection of pancreatic ductal adenocarcinoma.

Unger Keith K   Mehta Khyati Y KY   Kaur Prabhjit P   Wang Yiwen Y   Menon Smrithi S SS   Jain Shreyans K SK   Moonjelly Rose A RA   Suman Shubhankar S   Datta Kamal K   Singh Rajbir R   Fogel Paul P   Cheema Amrita K AK  

Oncotarget 20180501 33


The availability of robust classification algorithms for the identification of high risk individuals with resectable disease is critical to improving early detection strategies and ultimately increasing survival rates in PC. We leveraged high quality biospecimens with extensive clinical annotations from patients that received treatment at the Medstar-Georgetown University hospital. We used a high resolution mass spectrometry based global tissue profiling approach in conjunction with multivariate  ...[more]

Similar Datasets

| S-EPMC10587093 | biostudies-literature
| S-EPMC10259126 | biostudies-literature
| S-EPMC5727893 | biostudies-literature
| S-EPMC8295279 | biostudies-literature
| S-EPMC10178741 | biostudies-literature
| S-EPMC9613527 | biostudies-literature
| S-EPMC8855836 | biostudies-literature
| S-EPMC10741412 | biostudies-literature
| S-EPMC5581051 | biostudies-literature
2023-06-05 | GSE217384 | GEO