Unknown

Dataset Information

0

Ift172 conditional knock-out mice exhibit rapid retinal degeneration and protein trafficking defects.


ABSTRACT: Intraflagellar transport (IFT) is a bidirectional transport process that occurs along primary cilia and specialized sensory cilia, such as photoreceptor outersegments. Genes coding for various IFT components are associated with ciliopathies. Mutations in IFT172 lead to diseases ranging from isolated retinal degeneration to severe syndromic ciliopathies. In this study, we created a mouse model of IFT172-associated retinal degeneration to investigate the ocular disease mechanism. We found that depletion of IFT172 in rod photoreceptors leads to a rapid degeneration of the retina, with severely reduced electroretinography (ERG) responses by 1 month and complete outer-nuclear layer (ONL) degeneration by 2 months. We investigated molecular mechanisms of degeneration and show that IFT172 protein reduction leads to mislocalization of specific photoreceptor outersegment (OS) proteins (RHO, RP1, IFT139), aberrant light-driven translocation of alpha transducin and altered localization of glioma-associated oncogene family member 1 (GLI1). This mouse model exhibits key features of the retinal phenotype observed in patients with IFT172-associated blindness and can be used for in vivo testing of ciliopathy therapies.

SUBMITTER: Gupta PR 

PROVIDER: S-EPMC5961092 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ift172 conditional knock-out mice exhibit rapid retinal degeneration and protein trafficking defects.

Gupta Priya R PR   Pendse Nachiket N   Greenwald Scott H SH   Leon Mihoko M   Liu Qin Q   Pierce Eric A EA   Bujakowska Kinga M KM  

Human molecular genetics 20180601 11


Intraflagellar transport (IFT) is a bidirectional transport process that occurs along primary cilia and specialized sensory cilia, such as photoreceptor outersegments. Genes coding for various IFT components are associated with ciliopathies. Mutations in IFT172 lead to diseases ranging from isolated retinal degeneration to severe syndromic ciliopathies. In this study, we created a mouse model of IFT172-associated retinal degeneration to investigate the ocular disease mechanism. We found that dep  ...[more]

Similar Datasets

| S-EPMC2990765 | biostudies-literature
| S-EPMC3296582 | biostudies-literature
| S-EPMC4326328 | biostudies-literature
| S-EPMC5544743 | biostudies-literature
| S-EPMC1807947 | biostudies-literature
| S-EPMC8394251 | biostudies-literature
| S-EPMC2447669 | biostudies-literature
| S-EPMC7784033 | biostudies-literature
| S-EPMC4538965 | biostudies-literature
| S-EPMC4365039 | biostudies-literature