The role of human Metapneumovirus genetic diversity and nasopharyngeal viral load on symptom severity in adults.
Ontology highlight
ABSTRACT: Human metapneumovirus (HMPV) is established as one of the causative agents of respiratory tract infections. To date, there are limited reports that describe the effect of HMPV genotypes and/or viral load on disease pathogenesis in adults. This study aims to determine the role of HMPV genetic diversity and nasopharyngeal viral load on symptom severity in outpatient adults with acute respiratory tract infections.Severity of common cold symptoms of patients from a teaching hospital was assessed by a four-category scale and summed to obtain the total symptom severity score (TSSS). Association between the fusion and glycoprotein genes diversity, viral load (quantified using an improved RT-qPCR assay), and symptom severity were analyzed using bivariate and linear regression analyses.Among 81/3706 HMPV-positive patients, there were no significant differences in terms of demographics, number of days elapsed between symptom onset and clinic visit, respiratory symptoms manifestation and severity between different HMPV genotypes/sub-lineages. Surprisingly, elderly patients (?65 years old) had lower severity of symptoms (indicated by TSSS) than young and middle age adults (p?=?0.008). Nasopharyngeal viral load did not correlate with nor predict symptom severity of HMPV infection. Interestingly, at 3-5 days after symptom onset, genotype A-infected patients had higher viral load compared to genotype B (4.4 vs. 3.3 log10 RNA copies/?l) (p?=?0.003).Overall, HMPV genetic diversity and viral load did not impact symptom severity in adults with acute respiratory tract infections. Differences in viral load dynamics over time between genotypes may have important implications on viral transmission.
<h4>Background</h4>Human metapneumovirus (HMPV) is established as one of the causative agents of respiratory tract infections. To date, there are limited reports that describe the effect of HMPV genotypes and/or viral load on disease pathogenesis in adults. This study aims to determine the role of HMPV genetic diversity and nasopharyngeal viral load on symptom severity in outpatient adults with acute respiratory tract infections.<h4>Methods</h4>Severity of common cold symptoms of patients from a ...[more]
Project description:Honey bees exposed to Varroa mites incur substantial physical damage in addition to potential exposure to vectored viruses such as Deformed wing virus (DWV) that exists as three master variants (DWV-A, DWV-B, and DWV-C) and recombinants. Although mite-resistant bees have been primarily bred to mitigate the impacts of Varroa mites, mite resistance may be associated with increased tolerance or resistance to the vectored viruses. The goal of our study is to determine if five honey bee stocks (Carniolan, Italian, Pol-Line, Russian, and Saskatraz) differ in their resistance or tolerance to DWV based on prior breeding for mite resistance. We injected white-eyed pupae with a sublethal dose (105) of DWV or exposed them to mites and then evaluated DWV levels and dissemination and morphological symptoms upon adult emergence. While we found no evidence of DWV resistance across stocks (i.e., similar rates of viral replication and dissemination), we observed that some stocks exhibited reduced symptom severity suggestive of differential tolerance. However, DWV tolerance was not consistent across mite-resistant stocks as Russian bees were most tolerant, while Pol-Line exhibited the most severe symptoms. DWV variants A and B exhibited differential dissemination patterns that interacted significantly with the treatment group but not bee stock. Furthermore, elevated DWV-B levels reduced adult emergence time, while both DWV variants were associated with symptom likelihood and severity. These data indicate that the genetic differences underlying bee resistance to Varroa mites are not necessarily correlated with DWV tolerance and may interact differentially with DWV variants, highlighting the need for further work on mechanisms of tolerance and bee stock–specific physiological interactions with pathogen variants.
Project description:ObjectiveHuman metapneumovirus (hMPV) is a respiratory pathogen responsible for disease and subsequent hospitalizations in young children around the world. The disease pathology, including how viral load correlates with respiratory disease severity, remains unclear. This study investigated the correlation between viral load and clinical characteristics of hMPV infections.MethodsNasopharyngeal aspirate (NPA) samples collected from 18 infants hospitalized for lower respiratory tract infections (LRTIs) in winter were tested for hMPV by reverse transcriptase polymerase chain reaction (RT-PCR) and real-time RT-PCR. Their NPA samples were collected every-other-day to monitor changes in hMPV viral load during hospitalization. Also all these 18 patients were monitored to characterize clinically their illness.FindingshMPV load was not correlated with infection severity (P=0.5, 0.9, 0.5). In contrast, the log(10) of hMPV viral load was significantly different between those lasted for 6-11 days and those for less than 5 days (P=0.01), also the significant difference was shown between those of 6-11 days duration and those of more than 11 days (P=0.006), but there was no significant difference between those lasted for less than 5 days and those for more than 11 days (P=0.4). Additionally, high hMPV viral shedding occured between 6 and 11days.ConclusionhMPV load was significantly correlated with the course of illness. The association between hMPV viral load and the course of disease suggested that hMPV is an important pathogen in lower respiratory tract infection in children. But hMPV did not always lead to more severe respiratory illness.
Project description:The role of nasal and fecal microbiota in viral respiratory infections has not been established. We collected nasal swabs and washes, and fecal samples in a clinical study assessing the effect of probiotic Bifidobacterium animalis subsp. lactis Bl-04 on experimental rhinovirus infection. The nasal and fecal microbiota were characterized by 16S rRNA gene sequencing. The resulting data were compared with nasal inflammatory marker concentrations, viral load, and clinical symptoms. By using unsupervised clustering, the nasal microbiota divided into six clusters. The clusters predominant of Staphylococcus, Corynebacterium/Alloiococcus, Moraxella, and Pseudomonadaceae/Mixed had characteristic inflammatory marker and viral load profiles in nasal washes. The nasal microbiota clusters of subjects before the infection associated with the severity of clinical cold symptoms during rhinovirus infection. Rhinovirus infection and probiotic intervention did not significantly alter the composition of nasal or fecal microbiota. Our results suggest that nasal microbiota may influence the virus load, host innate immune response, and clinical symptoms during rhinovirus infection, however, further studies are needed.
Project description:We analyzed 64 human metapneumovirus strains from eight countries. Phylogenetic analysis identified two groups (A and B, amino acid identity 93%-96%) and four subgroups. Although group A strains predominated, accounting for 69% of all strains, as many B as A strains were found in persons >3 years of age.
Project description:The relationship between COVID-19 severity and viral load is unknown. Our objective was to assess the association between viral load and disease severity in COVID-19. In this single center observational study of adults with laboratory confirmed SARS-CoV-2, the first positive in-hospital nasopharyngeal swab was used to calculate the log10 copies/ml [log10 copy number (CN)] of SARS-CoV-2. Four categories based on level of care and modified sequential organ failure assessment score (mSOFA) at time of swab were determined. Median log10CN was compared between different levels of care and mSOFA quartiles. Median log10CN was compared in patients who did and did not receive influenza vaccine, and the correlation between log10CN and D-dimer was examined. We found that of 396 patients, 54.3% were male, and 25% had no major comorbidity. Hospital mortality was 15.7%. Median mSOFA was 2 (IQR 0-3). Median log10CN was 5.5 (IQR 3.3-8.0). Median log10CN was highest in non-intubated ICU patients [6.4 (IQR 4.4-8.1)] and lowest in intubated ICU patients [3.6 (IQR 2.6-6.9)] (p value < 0.01). In adjusted analyses, this difference remained significant [mean difference 1.16 (95% CI 0.18-2.14)]. There was no significant difference in log10CN between other groups in the remaining pairwise comparisons. There was no association between median log10CN and mSOFA in either unadjusted or adjusted analyses or between median log10CN in patients with and without influenza immunization. There was no correlation between log10CN and D-dimer. We conclude, in our cohort, we did not find a clear association between viral load and disease severity in COVID-19 patients. Though viral load was higher in non-intubated ICU patients than in intubated ICU patients there were no other significant differences in viral load by disease severity.
Project description:The role of human metapneumovirus (hMPV) in acute otitis media complicating upper respiratory tract infection (URI) was studied. Nasopharyngeal specimens from 700 URI episodes in 200 children were evaluated; 47 (7%) were positive for hMPV, 25 (3.6%) with hMPV as the only virus. Overall, 24% of URI episodes with hMPV only were complicated by acute otitis media, which was the lowest rate compared with other respiratory viruses. hMPV viral load was significantly higher in children with fever, but there was no difference in viral load in children with hMPV-positive URI with or without acute otitis media complication.
Project description:Coronavirus disease 2019 (COVID-19) has caused a global pandemic associated with substantial morbidity and mortality. Nasopharyngeal swabs and sputum samples are generally collected for serial viral load screening of respiratory contagions, but temporal profiles of these samples are not completely clear in patients with COVID-19. We performed an observational cohort study at Renmin Hospital of Wuhan University, which involved 31 patients with confirmed COVID-19 with or without underlying diseases. We obtained samples from each patient, and serial viral load was measured by real-time quantitative polymerase chain reaction. We found that the viral load in the sputum was inclined to be higher than samples obtained from the nasopharyngeal swab at disease presentation. Moreover, the viral load in the sputum decreased more slowly over time than in the nasopharyngeal group as the disease progressed. Interestingly, even when samples in the nasopharyngeal swab turned negative, it was commonly observed that patients with underlying diseases, especially hypertension and diabetes, remained positive for COVID-19 and required a longer period for the sputum samples to turn negative. These combined findings emphasize the importance of tracking sputum samples even in patients with negative tests from nasopharyngeal swabs, especially for those with underlying conditions. In conclusion, this work reinforces the importance of sputum samples for SARS-CoV-2 detection to minimize transmission of COVID-19 within the community.
Project description:Complete genes encoding the predicted nucleoprotein (N), phosphoprotein (P), matrix protein (M), fusion protein (F), M2-1protein, M2-2protein, small hydrophobic protein (SH), and attachmentprotein (G) of seven newly isolated human metapneumoviruses (hMPVs) were analyzed and compared with previously published data for hMPV genes. Phylogenetic analysis of the nucleotide sequences indicated that there were two genetic groups, tentatively named groups 1 and 2, similar to the grouping of human respiratory syncytial virus. Although the predicted amino acid sequences of N, P, M, F, and M2 were highly conserved between the two groups (amino acid identities, 96% for N, 85% for P, 97% for M, 94% for F, 95% for M2-1, and 90% for M2-2), the amino acid identities of the SH and G proteins were low (SH, 58%; G, 33%). Furthermore, each group could be subdivided into two subgroups by phylogenetic analysis, tentatively named subgroups 1A and 1B and subgroups 2A and 2B. The predicted amino acid sequences of G within members of each subgroup were highly conserved (amino acid identities, 88% for group 1A, 93% for group 1B, and 96% for group 2B). The G of hMPV is thought to be the major antigenic determinant and to play an important role in the production of neutralizing antibodies. Clarification of the antigenic diversity of G is important for epidemiological analysis and for establishment of strategies to prevent hMPV infection.
Project description:ImportanceThe SARS-CoV-2 viral trajectory has not been well characterized in incident infections. These data are needed to inform natural history, prevention practices, and therapeutic development.ObjectiveTo characterize early SARS-CoV-2 viral RNA load (hereafter referred to as viral load) in individuals with incident infections in association with COVID-19 symptom onset and severity.Design, setting, and participantsThis prospective cohort study was a secondary data analysis of a remotely conducted study that enrolled 829 asymptomatic community-based participants recently exposed (<96 hours) to persons with SARS-CoV-2 from 41 US states from March 31 to August 21, 2020. Two cohorts were studied: (1) participants who were SARS-CoV-2 negative at baseline and tested positive during study follow-up, and (2) participants who had 2 or more positive swabs during follow-up, regardless of the initial (baseline) swab result. Participants collected daily midturbinate swab samples for SARS-CoV-2 RNA detection and maintained symptom diaries for 14 days.ExposureLaboratory-confirmed SARS-CoV-2 infection.Main outcomes and measuresThe observed SARS-CoV-2 viral load among incident infections was summarized, and piecewise linear mixed-effects models were used to estimate the characteristics of viral trajectories in association with COVID-19 symptom onset and severity.ResultsA total of 97 participants (55 women [57%]; median age, 37 years [IQR, 27-52 years]) developed incident infections during follow-up. Forty-two participants (43%) had viral shedding for 1 day (median peak viral load cycle threshold [Ct] value, 38.5 [95% CI, 38.3-39.0]), 18 (19%) for 2 to 6 days (median Ct value, 36.7 [95% CI, 30.2-38.1]), and 31 (32%) for 7 days or more (median Ct value, 18.3 [95% CI, 17.4-22.0]). The cycle threshold value has an inverse association with viral load. Six participants (6%) had 1 to 6 days of viral shedding with censored duration. The peak mean (SD) viral load was observed on day 3 of shedding (Ct value, 33.8 [95% CI, 31.9-35.6]). Based on the statistical models fitted to 129 participants (60 men [47%]; median age, 38 years [IQR, 25-54 years]) with 2 or more SARS-CoV-2-positive swab samples, persons reporting moderate or severe symptoms tended to have a higher peak mean viral load than those who were asymptomatic (Ct value, 23.3 [95% CI, 22.6-24.0] vs 30.7 [95% CI, 29.8-31.4]). Mild symptoms generally started within 1 day of peak viral load, and moderate or severe symptoms 2 days after peak viral load. All 535 sequenced samples detected the G614 variant (Wuhan strain).Conclusions and relevanceThis cohort study suggests that having incident SARS-CoV-2 G614 infection was associated with a rapid viral load peak followed by slower decay. COVID-19 symptom onset generally coincided with peak viral load, which correlated positively with symptom severity. This longitudinal evaluation of the SARS-CoV-2 G614 with frequent molecular testing serves as a reference for comparing emergent viral lineages to inform clinical trial designs and public health strategies to contain the spread of the virus.
Project description:Human metapneumovirus (HMPV) is an important cause of acute respiratory illness in children. We examined the diversity and molecular evolution of HMPV using 85 full-length F (fusion) gene sequences collected over a 20-year period.The F gene sequences fell into two major groups, each with two subgroups, which exhibited a mean of 96% identity by predicted amino acid sequences. Amino acid identity within and between subgroups was higher than nucleotide identity, suggesting structural or functional constraints on F protein diversity. There was minimal progressive drift over time, and the genetic lineages were stable over the 20-year period. Several canonical amino acid differences discriminated between major subgroups, and polymorphic variations tended to cluster in discrete regions. The estimated rate of mutation was 7.12 x 10(-4) substitutions/site/year and the estimated time to most recent common HMPV ancestor was 97 years (95% likelihood range 66-194 years). Analysis suggested that HMPV diverged from avian metapneumovirus type C (AMPV-C) 269 years ago (95% likelihood range 106-382 years).HMPV F protein remains conserved over decades. HMPV appears to have diverged from AMPV-C fairly recently.