Model Informed Dose Optimization of Dichloroacetate for the Treatment of Congenital Lactic Acidosis in Children.
Ontology highlight
ABSTRACT: Dichloroacetate (DCA) is an investigational drug used to treat congenital lactic acidosis and other mitochondrial disorders. Response to DCA therapy in young children may be suboptimal following body weight-based dosing. This is because of autoinhibition of its metabolism, age-dependent changes in pharmacokinetics, and polymorphisms in glutathione transferase zeta 1 (GSTZ1), its primary metabolizing enzyme. Our objective was to predict optimal DCA doses for the treatment of congenital lactic acidosis in children. Accordingly, a semimechanistic pharmacokinetic-enzyme turnover model was developed in a step-wise approach: (1) a population pharmacokinetic model for adults was developed; (2) the adult model was scaled to children using allometry and physiology-based scaling; and (3) the scaled model was externally qualified, updated with clinical data, and optimal doses were projected. A 2-compartment model accounting for saturable clearance and GSTZ1 enzyme turnover successfully characterized the DCA PK in adults and children. DCA-induced inactivation of GSTZ1 resulted in phenoconversion of all subjects into slow metabolizers after repeated dosing. However, rate and extent of inactivation was 2-fold higher in subjects without the wild-type EGT allelic variant of GSTZ1, resulting in further phenoconversion into ultraslow metabolizers after repeated DCA administration. Furthermore, DCA-induced GSTZ1 inactivation rate and extent was found to be 25- to 30-fold lower in children than in adults, potentially accounting for the observed age-dependent changes in PK. Finally, a 12.5 and 10.6 mg/kg twice-daily DCA dose was optimal in achieving the target steady-state trough concentrations (5-25 mg/L) for EGT carrier and EGT noncarrier children, respectively.
SUBMITTER: Mangal N
PROVIDER: S-EPMC5967850 | biostudies-literature | 2018 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA