Unknown

Dataset Information

0

Flexible Organic Thin Film Transistors Incorporating a Biodegradable CO2-Based Polymer as the Substrate and Dielectric Material.


ABSTRACT: Employing CO2-based polymer in electronic applications should boost the consumption of CO2 feedstocks and provide the potential for non-permanent CO2 storage. In this study, polypropylene carbonate (PPC) is utilized as a dielectric and substrate material for organic thin film transistors (OTFTs) and organic inverter. The PPC dielectric film exhibits a surface energy of 47 mN m-1, a dielectric constant of 3, a leakage current density of less than 10-6 A cm-2, and excellent compatibility with pentacene and PTCDI-C8 organic semiconductors. Bottom-gate top-contact OTFTs are fabricated using PPC as a dielectric; they exhibits good electrical performance at an operating voltage of 60?V, with electron and hole mobilities of 0.14 and 0.026?cm2?V-1 s-1, and on-to-off ratios of 105 and 103, respectively. The fabricated p- and n-type transistors were connected to form a complementary inverter that operated at supply voltages of 20?V with high and low noise margins of 85 and 69%, respectively. The suitability of PPC as a substrate is demonstrated through the preparation of PPC sheets by casting method. The fabricated PPC sheets has a transparency of 92% and acceptable mechanical properties, yet they biodegraded rapidly through enzymatic degradation when using the lipase from Rhizhopus oryzae.

SUBMITTER: Rullyani C 

PROVIDER: S-EPMC5970150 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Flexible Organic Thin Film Transistors Incorporating a Biodegradable CO<sub>2</sub>-Based Polymer as the Substrate and Dielectric Material.

Rullyani Cut C   Sung Chao-Feng CF   Lin Hong-Cheu HC   Chu Chih-Wei CW  

Scientific reports 20180525 1


Employing CO<sub>2</sub>-based polymer in electronic applications should boost the consumption of CO<sub>2</sub> feedstocks and provide the potential for non-permanent CO<sub>2</sub> storage. In this study, polypropylene carbonate (PPC) is utilized as a dielectric and substrate material for organic thin film transistors (OTFTs) and organic inverter. The PPC dielectric film exhibits a surface energy of 47 mN m<sup>-1</sup>, a dielectric constant of 3, a leakage current density of less than 10<sup  ...[more]

Similar Datasets

| S-EPMC4869014 | biostudies-literature
| S-EPMC3493649 | biostudies-literature
| S-EPMC7576172 | biostudies-literature
| S-EPMC5615681 | biostudies-other
| S-EPMC555722 | biostudies-literature
| S-EPMC5793506 | biostudies-literature
| S-EPMC4366495 | biostudies-literature
| S-EPMC6641034 | biostudies-literature
| S-EPMC7033982 | biostudies-literature
| S-EPMC5120347 | biostudies-literature