Unknown

Dataset Information

0

A Glutamate Homeostat Controls the Presynaptic Inhibition of Neurotransmitter Release.


ABSTRACT: We have interrogated the synaptic dialog that enables the bi-directional, homeostatic control of presynaptic efficacy at the glutamatergic Drosophila neuromuscular junction (NMJ). We find that homeostatic depression and potentiation use disparate genetic, induction, and expression mechanisms. Specifically, homeostatic potentiation is achieved through reduced CaMKII activity postsynaptically and increased abundance of active zone material presynaptically at one of the two neuronal subtypes innervating the NMJ, while homeostatic depression occurs without alterations in CaMKII activity and is expressed at both neuronal subtypes. Furthermore, homeostatic depression is only induced through excess presynaptic glutamate release and operates with disregard to the postsynaptic response. We propose that two independent homeostats modulate presynaptic efficacy at the Drosophila NMJ: one is an intercellular signaling system that potentiates synaptic strength following diminished postsynaptic excitability, while the other adaptively modulates presynaptic glutamate release through an autocrine mechanism without feedback from the postsynaptic compartment.

SUBMITTER: Li X 

PROVIDER: S-EPMC5973541 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Glutamate Homeostat Controls the Presynaptic Inhibition of Neurotransmitter Release.

Li Xiling X   Goel Pragya P   Wondolowski Joyce J   Paluch Jeremy J   Dickman Dion D  

Cell reports 20180501 6


We have interrogated the synaptic dialog that enables the bi-directional, homeostatic control of presynaptic efficacy at the glutamatergic Drosophila neuromuscular junction (NMJ). We find that homeostatic depression and potentiation use disparate genetic, induction, and expression mechanisms. Specifically, homeostatic potentiation is achieved through reduced CaMKII activity postsynaptically and increased abundance of active zone material presynaptically at one of the two neuronal subtypes innerv  ...[more]

Similar Datasets

| S-EPMC7284068 | biostudies-literature
| S-EPMC2923826 | biostudies-literature
| S-EPMC8793855 | biostudies-literature
| S-EPMC2913707 | biostudies-literature
| S-EPMC7146643 | biostudies-literature
| S-EPMC6762771 | biostudies-literature
| S-EPMC7457419 | biostudies-literature
| S-EPMC2973817 | biostudies-literature
| S-EPMC2905680 | biostudies-other
| S-EPMC4367479 | biostudies-literature