Chromosomal Microarray With Clinical Diagnostic Utility in Children With Developmental Delay or Intellectual Disability.
Ontology highlight
ABSTRACT: Chromosomal microarray (CMA) testing is a first-tier test for patients with developmental delay, autism, or congenital anomalies. It increases diagnostic yield for patients with developmental delay or intellectual disability. In some countries, including Korea, CMA testing is not yet implemented in clinical practice. We assessed the diagnostic utility of CMA testing in a large cohort of patients with developmental delay or intellectual disability in Korea.We conducted a genome-wide microarray analysis of 649 consecutive patients with developmental delay or intellectual disability at the Seoul National University Children's Hospital. Medical records were reviewed retrospectively. Pathogenicity of detected copy number variations (CNVs) was evaluated by referencing previous reports or parental testing using FISH or quantitative PCR.We found 110 patients to have pathogenic CNVs, which included 100 deletions and 31 duplications of 270 kb to 30 Mb. The diagnostic yield was 16.9%, demonstrating the diagnostic utility of CMA testing in clinic. Parental testing was performed in 66 patients, 86.4% of which carried de novo CNVs. In eight patients, pathogenic CNVs were inherited from healthy parents with a balanced translocation, and genetic counseling was provided to these families. We verified five rarely reported deletions on 2p21p16.3, 3p21.31, 10p11.22, 14q24.2, and 21q22.13.This study demonstrated the clinical utility of CMA testing in the genetic diagnosis of patients with developmental delay or intellectual disability. CMA testing should be included as a clinical diagnostic test for all children with developmental delay or intellectual disability.
Project description:Chromosomal microarray (CMA) analysis for discovery of copy number variants (CNVs) is now recommended as a first-line diagnostic tool in patients with unexplained developmental delay/intellectual disability (DD/ID) and autism spectrum disorders. In this study, we present the results of CMA analysis in patients with DD/ID. Of 210 patients, pathogenic CNVs were detected in 26 (12%) and variants of uncertain clinical significance in 36 (17%) children. The diagnosis of well-recognized genetic syndromes was achieved in 12 patients. CMA analysis revealed pathogenic de novo CNVs, such as 11p13 duplication with new clinical features. Our results support the utility of CMA as a routine diagnostic test for unexplained DD/ID.
Project description:BACKGROUND:Developmental delay (DD) and intellectual disability (ID) are frequently associated with a broad spectrum of additional phenotypes. Chromosomal microarray analysis (CMA) has been recommended as a first-tier test for DD/ID in general, whereas the diagnostic yield differs significantly among DD/ID patients with different comorbid conditions. METHODS:To investigate the genotype-phenotype correlation, we examined the characteristics of identified pathogenic copy number variations (pCNVs) and compared the diagnostic yields among patient subgroups with different co-occurring conditions. RESULTS:This study is a retrospective review of CMA results generated from a mixed cohort of 710 Chinese patients with DD/ID. A total of 247 pCNVs were identified in 201 patients (28%). A large portion of these pCNVs were copy number losses, and the size of copy number losses was generally smaller than gains. The diagnostic yields were significantly higher in subgroups with co-occurring congenital heart defects (55%), facial dysmorphism (39%), microcephaly (34%) or hypotonia (35%), whereas co-occurring conditions of skeletal malformation (26%), brain malformation (24%) or epilepsy (24%) did not alter the yield. In addition, the diagnostic yield nominally correlated with ID severity. CONCLUSION:Varied yields exist in DD/ID patients with different phenotypic presentation. The presence of comorbid conditions can be among factors to consider when planning CMA.
Project description:IntroductionAneuploids, copy number variations (CNVs), and single nucleotide variants in specific genes are the main genetic causes of developmental delay (DD) and intellectual disability disorder (IDD). These genetic changes can be detected using chromosome analysis, chromosomal microarray (CMA), and next-generation DNA sequencing techniques. Therefore; In this study, we aimed to investigate the importance of CMA in determining the genomic etiology of unexplained DD and IDD in 123 patients.MethodFor 123 patients, chromosome analysis, DNA fragment analysis and microarray were performed. Conventional G-band karyotype analysis from peripheral blood was performed as part of the initial screening tests. FMR1 gene CGG repeat number and methylation analysis were carried out to exclude fragile X syndrome.ResultsCMA analysis was performed in 123 unexplained IDD/DD patients with normal karyotypes and fragile X screening, which were evaluated by conventional cytogenetics. Forty-four CNVs were detected in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients were reported. In 6 patients, one or more pathogenic CNVs were determined. Therefore, the diagnostic efficiency of CMA was found to be 31.7% (39/123).ConclusionToday, genetic analysis is still not part of the routine in the evaluation of IDD patients who present to psychiatry clinics. A genetic diagnosis from CMA can eliminate genetic question marks and thus alter the clinical management of patients. Approximately one-third of the positive CMA findings are clinically intervenable. However, the emergence of CNVs as important risk factors for multiple disorders increases the need for individuals with comorbid neurodevelopmental conditions to be the priority where the CMA test is recommended.
Project description:Copy number variants (CNVs) are recognized as a crucial genetic cause of neurodevelopmental disorders (NDDs). Chromosomal microarray analysis (CMA), the first-tier diagnostic test for individuals with NDDs, has been utilized to detect CNVs in clinical practice, but most reports are still from populations of European ancestry. To contribute more worldwide clinical genomics data, we investigated the genetic etiology of 410 Han Chinese patients with NDDs (151 with autism and 259 with unexplained intellectual disability (ID) and developmental delay (DD)) using CMA (Affymetrix) after G-banding karyotyping. Among all the NDD patients, 109 (26.6%) carried clinically relevant CNVs or uniparental disomies (UPDs), and 8 (2.0%) had aneuploidies (6 with trisomy 21 syndrome, 1 with 47,XXY, 1 with 47,XYY). In total, we found 129 clinically relevant CNVs and UPDs, including 32 CNVs in 30 ASD patients, and 92 CNVs and 5 UPDs in 79 ID/DD cases. When excluding the eight patients with aneuploidies, the diagnostic yield of pathogenic and likely pathogenic CNVs and UPDs was 20.9% for all NDDs (84/402), 3.3% in ASD (5/151), and 31.5% in ID/DD (79/251). When aneuploidies were included, the diagnostic yield increased to 22.4% for all NDDs (92/410), and 33.6% for ID/DD (87/259). We identified a de novo CNV in 14.9% (60/402) of subjects with NDDs. Interestingly, a higher diagnostic yield was observed in females (31.3%, 40/128) compared to males (16.1%, 44/274) for all NDDs (P = 4.8 × 10-4), suggesting that a female protective mechanism exists for deleterious CNVs and UPDs.
Project description:BackgroundSeveral patients with the 2p16.1p15 microdeletion syndrome have been reported. However, microduplication in the 2p16.1p15 chromosomal region has only been reported in one case, and milder clinical features were present compared to those attributed to 2p16.1p15 microdeletion syndrome. Some additional cases were deposited in DECIPHER database.Case presentationIn this report we describe four further cases of 2p16.1p15 microduplication in four unrelated probands. They presented with mild gross motor delay, delayed speech and language development, and mild dysmorphic features. In addition, two probands have macrocephaly and one a congenital heart anomaly. Newly described cases share several phenotype characteristics with those detailed in one previously reported microduplication case.ConclusionThe common features among patients are developmental delay, speech delay, mild to moderate intellectual disability and unspecific dysmorphic features. Two patients have bilateral clinodactyly of the 5th finger and two have bilateral 2nd-3rd toes syndactyly. Interestingly, as opposed to the deletion phenotype with some cases of microcephaly, 2 patients are reported with macrocephaly. The reported cases suggest that microduplication in 2p16.1p15 chromosomal region might be causally linked to developmental delay, speech delay, and mild intellectual disability.
Project description:BackgroundTo validate the clinical application of chromosomal microarray analysis (CMA) as a first-tier clinical diagnostic test and to determine the impact of CMA results on patient clinical management, we conducted a multicenter prospective study in Korean patients diagnosed as having developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA).MethodsWe performed both CMA and G-banding cytogenetics as the first-tier tests in 617 patients. To determine whether the CMA results directly influenced treatment recommendations, the referring clinicians were asked to complete a 39-item questionnaire for each patient separately after receiving the CMA results.ResultsA total of 122 patients (19.8%) had abnormal CMA results, with either pathogenic variants (N=65) or variants of possible significance (VPS, N=57). Thirty-five well-known diseases were detected: 16p11.2 microdeletion syndrome was the most common, followed by Prader-Willi syndrome, 15q11-q13 duplication, Down syndrome, and Duchenne muscular dystrophy. Variants of unknown significance (VUS) were discovered in 51 patients (8.3%). VUS of genes putatively associated with developmental disorders were found in five patients: IMMP2L deletion, PTCH1 duplication, and ATRNL1 deletion. CMA results influenced clinical management, such as imaging studies, specialist referral, and laboratory testing in 71.4% of patients overall, and in 86.0%, 83.3%, 75.0%, and 67.3% of patients with VPS, pathogenic variants, VUS, and benign variants, respectively.ConclusionsClinical application of CMA as a first-tier test improves diagnostic yields and the quality of clinical management in patients with DD/ID, ASD, and MCA.
Project description:BackgroundDevelopmental disabilities have diverse genetic causes that must be identified to facilitate precise diagnoses. We describe genomic data from 371 affected individuals, 309 of which were sequenced as proband-parent trios.MethodsWhole-exome sequences (WES) were generated for 365 individuals (127 affected) and whole-genome sequences (WGS) were generated for 612 individuals (244 affected).ResultsPathogenic or likely pathogenic variants were found in 100 individuals (27%), with variants of uncertain significance in an additional 42 (11.3%). We found that a family history of neurological disease, especially the presence of an affected first-degree relative, reduces the pathogenic/likely pathogenic variant identification rate, reflecting both the disease relevance and ease of interpretation of de novo variants. We also found that improvements to genetic knowledge facilitated interpretation changes in many cases. Through systematic reanalyses, we have thus far reclassified 15 variants, with 11.3% of families who initially were found to harbor a VUS and 4.7% of families with a negative result eventually found to harbor a pathogenic or likely pathogenic variant. To further such progress, the data described here are being shared through ClinVar, GeneMatcher, and dbGaP.ConclusionsOur data strongly support the value of large-scale sequencing, especially WGS within proband-parent trios, as both an effective first-choice diagnostic tool and means to advance clinical and research progress related to pediatric neurological disease.
Project description:BackgroundGlobal developmental delay or intellectual disability usually accompanies various genetic disorders as a part of the syndrome, which may include seizures, autism spectrum disorder and multiple congenital abnormalities. Next-generation sequencing (NGS) techniques have improved the identification of pathogenic variants and genes related to developmental delay. This study aimed to evaluate the yield of whole exome sequencing (WES) and neurodevelopmental disorder gene panel sequencing in a pediatric cohort from Ukraine. Additionally, the study computationally predicted the effect of variants of uncertain significance (VUS) based on recently published genetic data from the country's healthy population.MethodsThe study retrospectively analyzed WES or gene panel sequencing findings of 417 children with global developmental delay, intellectual disability, and/or other symptoms. Variants of uncertain significance were annotated using CADD-Phred and SIFT prediction scores, and their frequency in the healthy population of Ukraine was estimated.ResultsA definitive molecular diagnosis was established in 66 (15.8%) of the individuals. WES diagnosed 22 out of 37 cases (59.4%), while the neurodevelopmental gene panel identified 44 definitive diagnoses among the 380 tested patients (12.1%). Non-diagnostic findings (VUS and carrier) were reported in 350 (83.2%) individuals. The most frequently diagnosed conditions were developmental and epileptic encephalopathies associated with severe epilepsy and GDD/ID (associated genes ARX, CDKL5, STXBP1, KCNQ2, SCN2A, KCNT1, KCNA2). Additionally, we annotated 221 VUS classified as potentially damaging, AD or X-linked, potentially increasing the diagnostic yield by 30%, but 18 of these variants were present in the healthy population of Ukraine.ConclusionsThis is the first comprehensive study on genetic causes of GDD/ID conducted in Ukraine. This study provides the first comprehensive investigation of the genetic causes of GDD/ID in Ukraine. It presents a substantial dataset of diagnosed genetic conditions associated with GDD/ID. The results support the utilization of NGS gene panels and WES as first-line diagnostic tools for GDD/ID cases, particularly in resource-limited settings. A comprehensive approach to resolving VUS, including computational effect prediction, population frequency analysis, and phenotype assessment, can aid in further reclassification of deleterious VUS and guide further testing in families.
Project description:Background:Chromosomal microarray analysis is a first-stage test that is used for the diagnosis of intellectual disability and global developmental delay. Chromosomal microarray analysis can detect well-known microdeletion syndromes. It also contributes to the identification of genes that are responsible for the phenotypes in the new copy number variations. Results:Chromosomal microarray analysis was conducted on 124 patients with intellectual disability and global developmental delay. Multiplex ligation-dependent probe amplification was used for the confirmation of chromosome 22q11.2 deletion/duplication. 26 pathogenic and likely pathogenic copy number variations were detected in 23 patients (18.55%) in a group of 124 Turkish patients with intellectual disability and global developmental delay. Chromosomal microarray analysis revealed pathogenic de novo Copy number variations, such as a novel 2.9-Mb de novo deletion at 18q22 region with intellectual disability and autism spectrum disorder, and a 22q11.2 region homozygote duplication with new clinical features. Conclusion:Our data expand the spectrum of 22q11.2 region mutations, reveal new loci responsible from autism spectrum disorder and provide new insights into the genotype-phenotype correlations of intellectual disability and global developmental delay.