Unknown

Dataset Information

0

Complement Activation During Ischemia/Reperfusion Injury Induces Pericyte-to-Myofibroblast Transdifferentiation Regulating Peritubular Capillary Lumen Reduction Through pERK Signaling.


ABSTRACT: Pericytes are one of the principal sources of scar-forming myofibroblasts in chronic kidneys disease. However, the modulation of pericyte-to-myofibroblast transdifferentiation (PMT) in the early phases of acute kidney injury is poorly understood. Here, we investigated the role of complement in inducing PMT after transplantation. Using a swine model of renal ischemia/reperfusion (I/R) injury, we found the occurrence of PMT after 24?h of I/R injury as demonstrated by reduction of PDGFR?+/NG2+ cells with increase in myofibroblasts marker ?SMA. In addition, PMT was associated with significant reduction in peritubular capillary luminal diameter. Treatment by C1-inhibitor (C1-INH) significantly preserved the phenotype of pericytes maintaining microvascular density and capillary lumen area at tubulointerstitial level. In vitro, C5a transdifferentiated human pericytes in myofibroblasts, with increased ?SMA expression in stress fibers, collagen I production, and decreased antifibrotic protein Id2. The C5a-induced PMT was driven by extracellular signal-regulated kinases phosphorylation leading to increase in collagen I release that required both non-canonical and canonical TGF? pathways. These results showed that pericytes are a pivotal target of complement activation leading to a profibrotic maladaptive cellular response. Our studies suggest that C1-INH may be a potential therapeutic strategy to counteract the development of PMT and capillary lumen reduction in I/R injury.

SUBMITTER: Castellano G 

PROVIDER: S-EPMC5974049 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Complement Activation During Ischemia/Reperfusion Injury Induces Pericyte-to-Myofibroblast Transdifferentiation Regulating Peritubular Capillary Lumen Reduction Through pERK Signaling.

Castellano Giuseppe G   Franzin Rossana R   Stasi Alessandra A   Divella Chiara C   Sallustio Fabio F   Pontrelli Paola P   Lucarelli Giuseppe G   Battaglia Michele M   Staffieri Francesco F   Crovace Antonio A   Stallone Giovanni G   Seelen Marc M   Daha Mohamed R MR   Grandaliano Giuseppe G   Gesualdo Loreto L  

Frontiers in immunology 20180523


Pericytes are one of the principal sources of scar-forming myofibroblasts in chronic kidneys disease. However, the modulation of pericyte-to-myofibroblast transdifferentiation (PMT) in the early phases of acute kidney injury is poorly understood. Here, we investigated the role of complement in inducing PMT after transplantation. Using a swine model of renal ischemia/reperfusion (I/R) injury, we found the occurrence of PMT after 24 h of I/R injury as demonstrated by reduction of PDGFRβ<sup>+</sup  ...[more]

Similar Datasets

| S-EPMC8371340 | biostudies-literature
| S-EPMC6701129 | biostudies-literature
| S-EPMC8047102 | biostudies-literature
| S-EPMC9057602 | biostudies-literature
| S-EPMC9580167 | biostudies-literature
| S-EPMC3721358 | biostudies-literature
| S-EPMC6107794 | biostudies-literature
| S-EPMC6933315 | biostudies-literature
| S-EPMC4654255 | biostudies-literature
| S-EPMC3488944 | biostudies-literature