Unknown

Dataset Information

0

Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).


ABSTRACT: OBJECTIVE:Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. MATERIALS AND METHODS:A 3D accelerated T1-weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. RESULTS:The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. CONCLUSION:In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T1-weighted SPACE while maintaining good image quality.

SUBMITTER: Zhu C 

PROVIDER: S-EPMC5976530 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

Zhu Chengcheng C   Tian Bing B   Chen Luguang L   Eisenmenger Laura L   Raithel Esther E   Forman Christoph C   Ahn Sinyeob S   Laub Gerhard G   Liu Qi Q   Lu Jianping J   Liu Jing J   Hess Christopher C   Saloner David D  

Magma (New York, N.Y.) 20171205 3


<h4>Objective</h4>Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging.<h4>Materials and methods</h4>A 3D accelerated T<sub>1</sub>-weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) we  ...[more]

Similar Datasets

| S-EPMC5298018 | biostudies-literature
| S-EPMC4706507 | biostudies-literature
| S-EPMC6816154 | biostudies-literature
| S-EPMC6688807 | biostudies-literature
| S-EPMC6004122 | biostudies-literature
| S-EPMC6788976 | biostudies-literature
| S-EPMC9263889 | biostudies-literature
| S-EPMC7655338 | biostudies-literature
| S-EPMC6684065 | biostudies-literature
| S-EPMC8724040 | biostudies-literature