Unknown

Dataset Information

0

Differential impact of landscape-scale strategies for crop cultivar deployment on disease dynamics, resistance durability and long-term evolutionary control.


ABSTRACT: A multitude of resistance deployment strategies have been proposed to tackle the evolutionary potential of pathogens to overcome plant resistance. In particular, many landscape-based strategies rely on the deployment of resistant and susceptible cultivars in an agricultural landscape as a mosaic. However, the design of such strategies is not easy as strategies targeting epidemiological or evolutionary outcomes may not be the same. Using a stochastic spatially explicit model, we studied the impact of landscape organization (as defined by the proportion of fields cultivated with a resistant cultivar and their spatial aggregation) and key pathogen life-history traits on three measures of disease control. Our results show that short-term epidemiological dynamics are optimized when landscapes are planted with a high proportion of the resistant cultivar in low aggregation. Importantly, the exact opposite situation is optimal for resistance durability. Finally, well-mixed landscapes (balanced proportions with low aggregation) are optimal for long-term evolutionary equilibrium (defined here as the level of long-term pathogen adaptation). This work offers a perspective on the potential for contrasting effects of landscape organization on different goals of disease management and highlights the role of pathogen life history.

SUBMITTER: Papaix J 

PROVIDER: S-EPMC5979631 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differential impact of landscape-scale strategies for crop cultivar deployment on disease dynamics, resistance durability and long-term evolutionary control.

Papaïx Julien J   Rimbaud Loup L   Burdon Jeremy J JJ   Zhan Jiasui J   Thrall Peter H PH  

Evolutionary applications 20171130 5


A multitude of resistance deployment strategies have been proposed to tackle the evolutionary potential of pathogens to overcome plant resistance. In particular, many landscape-based strategies rely on the deployment of resistant and susceptible cultivars in an agricultural landscape as a mosaic. However, the design of such strategies is not easy as strategies targeting epidemiological or evolutionary outcomes may not be the same. Using a stochastic spatially explicit model, we studied the impac  ...[more]

Similar Datasets

| S-EPMC4662345 | biostudies-literature
| S-EPMC5918245 | biostudies-literature
| S-EPMC6722887 | biostudies-other
| S-EPMC11196896 | biostudies-literature
| S-EPMC5627193 | biostudies-literature
| S-EPMC5095210 | biostudies-literature
| S-EPMC8361660 | biostudies-literature
| S-EPMC5157974 | biostudies-literature
| S-EPMC10089649 | biostudies-literature
| S-EPMC3853564 | biostudies-literature