Exercise Mitigates Alcohol Induced Endoplasmic Reticulum Stress Mediated Cognitive Impairment through ATF6-Herp Signaling.
Ontology highlight
ABSTRACT: Chronic ethanol/alcohol (AL) dosing causes an elevation in homocysteine (Hcy) levels, which leads to the condition known as Hyperhomocysteinemia (HHcy). HHcy enhances oxidative stress and blood-brain-barrier (BBB) disruption through modulation of endoplasmic reticulum (ER) stress; in part by epigenetic alternation, leading to cognitive impairment. Clinicians have recommended exercise as a therapy; however, its protective effect on cognitive functions has not been fully explored. The present study was designed to observe the protective effects of exercise (EX) against alcohol-induced epigenetic and molecular alterations leading to cerebrovascular dysfunction. Wild-type mice were subjected to AL administration (1.5?g/kg-bw) and subsequent treadmill EX for 12 weeks (5?day/week@7-11?m/min). AL affected mouse brain through increases in oxidative and ER stress markers, SAHH and DNMTs alternation, while decreases in CBS, CSE, MTHFR, tight-junction proteins and cellular H2S levels. Mechanistic study revealed that AL increased epigenetic DNA hypomethylation of Herp promoter. BBB dysfunction and cognitive impairment were observed in the AL treated mice. AL mediated transcriptional changes were abolished by administration of ER stress inhibitor DTT. In conclusion, exercise restored Hcy and H2S to basal levels while ameliorating AL-induced ER stress, diminishing BBB dysfunction and improving cognitive function via ATF6-Herp-signaling. EX showed its protective efficacy against AL-induced neurotoxicity.
SUBMITTER: George AK
PROVIDER: S-EPMC5980102 | biostudies-literature | 2018 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA