Unknown

Dataset Information

0

Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.).


ABSTRACT: The cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and fruit trichomes or spines are an important trait for external fruit quality. The mechanisms underlying spine formation are not well understood, but the plant-specific NAC family of transcription factors may play important roles in fruit spine initiation and development. In this study, we conducted a genome-wide survey and identified 91 NAC gene homologs in the cucumber genome. Clustering analysis classified these genes into six subfamilies; each contained a varying number of NAC family members with a similar intron-exon structure and conserved motifs. Quantitative real-time PCR analysis revealed tissue-specific expression patterns of these genes, including 10 and 12 that exhibited preferential expression in the stem and fruit, respectively. Thirteen of the 91 NAC genes showed higher expression in the wild-type plant than in its near-isogenic trichome mutant, suggesting their important roles in fruit spine development. Exogenous application of four plant hormones promoted spine formation and increased spine density on the cucumber fruits; several NAC genes showed differential expression over time in response to phytohormone treatments on cucumber fruit, implying their essential roles in fruit-trichome development. Among the NAC genes identified, 12 were found to be targets of 13 known cucumber micro-RNAs. Collectively, these findings provide a useful resource for further analysis of the interactions between NAC genes and genes underlying trichome organogenesis and development during fruit spine development in cucumber.

SUBMITTER: Liu X 

PROVIDER: S-EPMC5981648 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (<i>Cucumis sativus</i> L.).

Liu Xingwang X   Wang Ting T   Bartholomew Ezra E   Black Kezia K   Dong Mingming M   Zhang Yaqi Y   Yang Sen S   Cai Yanling Y   Xue Shudan S   Weng Yiqun Y   Ren Huazhong H  

Horticulture research 20180601


The cucumber (<i>Cucumis sativus</i> L.) is an important vegetable crop worldwide, and fruit trichomes or spines are an important trait for external fruit quality. The mechanisms underlying spine formation are not well understood, but the plant-specific NAC family of transcription factors may play important roles in fruit spine initiation and development. In this study, we conducted a genome-wide survey and identified 91 <i>NAC</i> gene homologs in the cucumber genome. Clustering analysis classi  ...[more]

Similar Datasets

2015-05-01 | GSE57294 | GEO
| S-EPMC5379036 | biostudies-literature
| S-EPMC1163627 | biostudies-other
2015-08-11 | GSE60346 | GEO
| S-EPMC5148027 | biostudies-literature
2015-08-11 | E-GEOD-60346 | biostudies-arrayexpress
| S-EPMC4144775 | biostudies-literature
| S-EPMC7143270 | biostudies-literature
| S-EPMC7148364 | biostudies-literature
| S-EPMC5983590 | biostudies-literature