Polylysine as a functional biopolymer to couple gold nanorods to tumor-tropic cells.
Ontology highlight
ABSTRACT: The delivery of plasmonic particles, such as gold nanorods, to the tumor microenvironment has attracted much interest in biomedical optics for topical applications as the photoacoustic imaging and photothermal ablation of cancer. However, the systemic injection of free particles still crashes into a complexity of biological barriers, such as the reticuloendothelial system, that prevent their efficient biodistribution. In this context, the notion to exploit the inherent features of tumor-tropic cells for the creation of a Trojan horse is emerging as a plausible alternative.We report on a convenient approach to load cationic gold nanorods into murine macrophages that exhibit chemotactic sensitivity to track gradients of inflammatory stimuli. In particular, we compare a new model of poly-L-lysine-coated particles against two alternatives of cationic moieties that we have presented elsewhere, i.e. a small quaternary ammonium compound and an arginine-rich cell-penetrating peptide. Murine macrophages that are exposed to poly-L-lysine-coated gold nanorods at a dosage of 400 µM Au for 24 h undertake efficient uptake, i.e. around 3 pg Au per cell, retain the majority of their cargo until 24 h post-treatment and maintain around 90% of their pristine viability, chemotactic and pro-inflammatory functions.With respect to previous models of cationic coatings, poly-L-lysine is a competitive solution for the preparation of biological vehicles of gold nanorods, especially for applications that may require longer life span of the Trojan horse, say in the order of 24 h. This biopolymer combines the cost-effectiveness of small molecules and biocompatibility and efficiency of natural peptides and thus holds potential for translational developments.
<h4>Background</h4>The delivery of plasmonic particles, such as gold nanorods, to the tumor microenvironment has attracted much interest in biomedical optics for topical applications as the photoacoustic imaging and photothermal ablation of cancer. However, the systemic injection of free particles still crashes into a complexity of biological barriers, such as the reticuloendothelial system, that prevent their efficient biodistribution. In this context, the notion to exploit the inherent feature ...[more]
Project description:The immune system may respond to engineered nanomaterials (ENM) through inflammatory reactions. The NLRP3 inflammasome responds to a wide range of ENM, and its activation is associated with various inflammatory diseases. The objective of the study was to compare the effects of gold ENM of different shapes on NLRP3 inflammasome activation and related signalling pathways. Differentiated THP-1 cells (wildtype, ASC- or NLRP3-deficient), were exposed to PEGylated gold nanorods, nanostars, and nanospheres. Exposed cells were subjected to gene expression analysis. Nanorods, but not nanostars or nanospheres, showed NLRP3 inflammasome activation. ASC- or NLRP3-deficient cells did not show this effect. Gold nanorod-induced NLRP3 inflammasome activation was accompanied by downregulated sterol/cholesterol biosynthesis, oxidative phosphorylation, and purinergic receptor signalling. In conclusion, the shape and surface chemistry of gold nanoparticles determine NLRP3 inflammasome activation.
Project description:Gold nanoparticles have been investigated as photothermal agents, drug delivery carriers, diagnostics, and theranostics. As long-term accumulation of nanoparticles in nontarget tissues is a growing concern, it is vital to establish biodistribution profiles, tumor uptake, and tissue residence times for each nano-based system. This study aimed to investigate the prostate tumor uptake, photothermal therapy mediated macromolecular delivery, acute and chronic biodistribution profiles, and organ residence time differences between two nanoparticles, i.e., gold nanocages and gold nanorods. These particles have tunable surface plasmon resonances in the near infrared, but dissimilar shapes. Gold nanocages and nanorods had very different light to heat transduction efficiencies, with gold nanocages requiring 18.4 times fewer particles and approximately half the gold mass of gold nanorods to achieve the same heating profile given a constant laser intensity. It was also observed that while the photothermal macromolecular delivery enhancements were similar for the two systems when dosed by optical density, the tumoral uptake and biodistribution profiles for each of these shapes differed, with the nanocages residing in the liver, kidneys and spleen for less time than the nanorods. Additionally, it was observed that the nanocages were excreted from the body at a higher percentage of injected dose than the nanorods at both the 7 and 28 day time points. These findings have implications for the use of these constructs in diagnostic and therapeutic applications.
Project description:Gold nanorods (AuNR) have been intensively used in nanomedicine for cancer diagnostics and therapy, due to their excellent plasmonic photothermal properties. Tuning the size and aspect ratio of AuNR tailors the localized surface plasmon resonance (LSPR) in the NIR spectrum at which biological tissues are transparent, thus enables specific and effective treatment. The AuNR extravasates into tumor interstitium through enhanced permeation and retention (EPR) effect. Efficient AuNR based cancer therapy requires efficient AuNR tumor delivery. However, the size of AuNR can dramatically affect its blood circulation and tumor accumulation. Here we proposed for the first time a systematic framework to investigate the size-dependent kinetics of AuNRs during EPR mediated tumor delivery. By using 64Cu-labeled AuNRs with positron emission tomography (PET) and kinetic modeling, the in vivo uptake and kinetics of 64Cu-AuNR during its blood circulation, tumor accumulation and elimination were studied both in vitro and in vivo. The results of different sized AuNRs were compared and the optimum size of AuNR was suggested for EPR mediated tumor delivery. Our study provides a better understanding of the in vivo behavior of AuNR, which can help future design of nanomaterials for cancer imaging and therapy.
Project description:Stable aqueous dispersions of citrate-stabilized gold nanorods (cit-GNRs) have been prepared in scalable fashion by surfactant exchange from cetyltrimethylammonium bromide (CTAB)-stabilized GNRs, using polystyrenesulfonate (PSS) as a detergent. The surfactant exchange process was monitored by infrared spectroscopy, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS). The latter established the quantitative displacement of CTAB (by PSS) and of PSS (by citrate). The Cit-GNRs are indefinitely stable at low ionic strength, and are conducive to further ligand exchange without loss of dispersion stability. The reliability of the surface exchange process supports the systematic analysis of ligand structure on the hydrodynamic size of GNRs, as described in a companion paper.
Project description:The subpopulations of mesenchymal stem cells isolated from breast adipose tissue which display migrated towards conditioned media from MDA-MB231 cell line were expanded for miRNA analysis. The tumor microenvironment (TM) is known to promote tumor growth and progression. Ubiquitously distributed tissue resident stem cells (MSCs) elicit regenerative properties. In addition, they are capable of homing to sites of inflammation, injury, and tumor. Considering the tumor tropic property of MSCs, the interaction between the breast cancer (BC) microenvironment and breast resident adipose tissue derived MSCs (ASCs) merits further investigations. Initial data indicate that a subset of ASCs derived from breast adipose tissue (B-ASCs) display a high affinity towards the conditioned media (CM) from two breast cancer cell lines, MDA-MB231 (MDA-CM) and MCF7 (MCF-CM). Profiling secreted cytokines of these CMs identified significant expression of angiogenin, GM-CSF, and IL-6. While the expression of GRO-α, MCP-1, RANTES, and IL-1α is more pronounced in MDA-CM, MCF-CM contains higher amounts of IGFBP2, TRAIL, and ErbB3. Gene expression profiling suggests that despite the distinct differences, both migratory subset of B-ASCs towards MDA-CM and MCF-CM display perturbed expression of genes like KISS1, TNSF1, IL18 and MMP2, which could be associated with a defensive role of B-ASCs. In addition, the BC microenvironment alters microRNA (miRNA) expressions in B-ASCs. in this study the migratory cells were evaluated for miRNA expression versus non-migratory counterparts. as controls unexposed parental cell lines (2) were used on the same hybridization chip in which one labeled Hy3 and other labeled Hy5. The ratio of the control parental cells was used as base nanalysis of miRNA expression in MSCs. we also include another control in this study, the migratory subpopulations of MSCs which display migratory potentials against protein gradient (M5) were analyzed for miRNA expression versus non-migratory counterparts (NM-5). using this control facilitate identification of those miRNA responsive to tumor CM. the data analysis confirm that altered gene and miRNA profiles resulted from exposure of MCF-CM and MDA-CM on B-ASCs are similar to those observed in B-ASCs isolated from breast adipose tissue of BC patients. Analysis the signaling between the B-ASCs and TM may help in understanding the possible role of B-ASCs in stasis, progression, or regression of the BC. The microRNA expression of migratory subpopulations were compared to parental populations of MSCs.
Project description:Tumor-selective accumulation of gold nanorods (GNR) has been demonstrated for visualization of tumor hypoxia by photoacoustic imaging. We prepared GNRs with hypoxia-targeting nitroimidazole units (G-NI) on their surface. Biological experiments revealed that G-NI produced a strong photoacoustic signal in hypoxic tumor cells and tissues.
Project description:The synthesis, sorting, and characterization of monodisperse gold nanorods with dimensions around 10 nm in length and below 6 nm in diameter is reported. They display tunable plasmon resonance in the near infrared, a region where cellular absorption is reduced. A dual color photothermal microscope is developed to demonstrate that they are promising single molecule probes for bioimaging.
Project description:Background:The existing chemo/radiotherapy fail to eliminate cancer cells due to the restriction of either drug resistance or radio tolerance. The predicament urges researchers to continuously explore alternative strategy for achieving a potent curative effect. Methods:Functional chlorin gold nanorods (Ce6-AuNR@SiO2-d-CPP) were fabricated aiming at treating breast cancer by photothermal/photodynamic therapy (PTT/PDT). The nanostructure was developed by synthesizing Au nanorods as the photothermal conversion material, and by coating the pegylated mesoporous SiO2 as the shell for entrapping photosensitizer Ce6 and for linking the D-type cell penetrating peptide (d-CPP). The function of Ce6-AuNR@SiO2-d-CPP was verified on human breast cancer MCF-7 cells and MCF-7 cells xenografts in nude mice. Results:Under combinational treatment of PTT and PDT, Ce6-AuNR@SiO2-d-CPP demonstrated a strong cytotoxicity and apoptosis inducing effects in breast cancer cells in vitro, and a robust treatment efficacy in breast cancer-bearing nude mice. The uptake mechanism involved the energy-consuming caveolin-mediated endocytosis, and Ce6-AuNR@SiO2-d-CPP in PTT/PDT mode could induce apoptosis by multiple pathways in breast cancer cells. Conclusion:Ce6-AuNR@SiO2-d-CPP demonstrated a robust efficacy in the treatment of breast cancer by photothermal/photodynamic therapy. Therefore, the present study could offer a new promising strategy to treat the refractory breast cancer.
Project description:Tumor recurrence after surgery is the main cause of treatment failure. However, the initial stage of recurrence is not easy to detect, and it is difficult to cure in the late stage. In order to improve the life quality of postoperative patients, an efficient synergistic immunotherapy was developed to achieve early diagnosis and treatment of post-surgical tumor recurrence, simultaneously. In this paper, two kinds of theranostic agents based on gold nanorods (AuNRs) platform were prepared. AuNRs and quantum dots (QDs) in one agent was used for the detection of carcinoembryonic antigen (CEA), using fluorescence resonance energy transfer (FRET) technology to indicate the occurrence of in situ recurrence, while AuNRs in the other agent was used for photothermal therapy (PTT), together with anti-PDL1 mediated immunotherapy to alleviate the process of tumor metastasis. A series of assays indicated that this synergistic immunotherapy could induce tumor cell death and the increased generation of CD3+/CD4+ T-lymphocytes and CD3+/CD8+ T-lymphocytes. Besides, more immune factors (IL-2, IL-6, and IFN-γ) produced by synergistic immunotherapy were secreted than mono-immunotherapy. This cooperative immunotherapy strategy could be utilized for diagnosis and treatment of postoperative tumor recurrence at the same time, providing a new perspective for basic and clinical research.
Project description:Gold nanorods (GNRs) are a unique class of metal nanostructures that have attractive potentials in biomedical applications, and the concern on their biological safety is concomitantly increasing. Hemocompatibility is extremely important as their contact with blood circulation is unavoidable during in vivo delivery. Herein, two kinds of GNRs coated with hexadecyltrimethylammonium bromide (C-GNRs) or poly(sodium-p-styrenesulfonate) are used to test their potential toxicological effects in blood. C-GNRs with positive surface charges efficiently induce hemolysis when encountering erythrocytes. Cellular internalization of C-GNRs is found, and they subsequently bind with hemoglobin, forming bioconjugates. The interaction between hemoglobin and C-GNR (stoichiometry 32.7:1) is regulated by electrostatic forces. Chromophores like tryptophan (Trp) are found to interact with C-GNRs, causing enhancement in fluorescence intensity. The conformation of protein is partially altered, evidenced by decrease in ?-helical, increase in ?-sheet and random coil of hemoglobin. Although C-GNRs do not essentially decrease oxygen binding capacity of hemoglobin, they hamper oxygen release from the protein. Heme, the oxygen binding unit, releases from hemoglobin upon C-GNR treatment, which could contribute to C-GNR-induced hemolysis. This study demonstrates the hematological effects of GNRs, revealing their potential risk in biomedical applications.