Unknown

Dataset Information

0

Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography.


ABSTRACT: As contamination and environmental degradation increase nowadays, there is a huge demand for new eco-friendly materials. Despite its use for thousands of years, cellulose and its derivatives have gained renewed interest as favourable alternatives to conventional plastics, due to their abundance and lower environmental impact. We report the fabrication of photonic and plasmonic structures by moulding hydroxypropyl cellulose into sub-micrometric periodic lattices, using soft lithography. This is an alternative way to achieve structural colour in this material which is usually obtained exploiting its chiral nematic phase. Cellulose based photonic crystals are biocompatible and can be dissolved in water or not depending on the derivative employed. Patterned cellulose membranes exhibit tuneable colours and may be used to boost the photoluminescence of a host organic dye. Furthermore, we show how metal coating these cellulose photonic architectures leads to plasmonic crystals with excellent optical properties acting as disposable surface enhanced Raman spectroscopy substrates.

SUBMITTER: Espinha A 

PROVIDER: S-EPMC5985939 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography.

Espinha André A   Dore Camilla C   Matricardi Cristiano C   Alonso Maria Isabel MI   Goñi Alejandro R AR   Mihi Agustín A  

Nature photonics 20180409 6


As contamination and environmental degradation increase nowadays, there is a huge demand for new eco-friendly materials. Despite its use for thousands of years, cellulose and its derivatives have gained renewed interest as favourable alternatives to conventional plastics, due to their abundance and lower environmental impact. We report the fabrication of photonic and plasmonic structures by moulding hydroxypropyl cellulose into sub-micrometric periodic lattices, using soft lithography. This is a  ...[more]

Similar Datasets

| S-EPMC6753120 | biostudies-literature
| S-EPMC5449990 | biostudies-literature
| S-EPMC5495155 | biostudies-literature
| S-EPMC7773875 | biostudies-literature
| S-EPMC8457512 | biostudies-literature
| S-EPMC3454527 | biostudies-literature
| S-EPMC5495156 | biostudies-literature
| S-EPMC4726398 | biostudies-literature
| S-EPMC6835709 | biostudies-literature
| S-EPMC6438354 | biostudies-literature