Unknown

Dataset Information

0

Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation.


ABSTRACT: Centromeres are essential for chromosome segregation and are specified epigenetically by the presence of the histone H3 variant CENP-A. In flies and humans, replenishment of the centromeric mark is uncoupled from DNA replication and requires the removal of H3 "placeholder" nucleosomes. Although transcription at centromeres has been previously linked to the loading of new CENP-A, the underlying molecular mechanism remains poorly understood. Here, we used Drosophila melanogaster tissue culture cells to show that centromeric presence of actively transcribing RNA polymerase II temporally coincides with de novo deposition of dCENP-A. Using a newly developed dCENP-A loading system that is independent of acute transcription, we found that short inhibition of transcription impaired dCENP-A incorporation into chromatin. Interestingly, initial targeting of dCENP-A to centromeres was unaffected, revealing two stability states of newly loaded dCENP-A: a salt-sensitive association with the centromere and a salt-resistant chromatin-incorporated form. This suggests that transcription-mediated chromatin remodeling is required for the transition of dCENP-A to fully incorporated nucleosomes at the centromere.

SUBMITTER: Bobkov GOM 

PROVIDER: S-EPMC5987708 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation.

Bobkov Georg O M GOM   Gilbert Nick N   Heun Patrick P  

The Journal of cell biology 20180406 6


Centromeres are essential for chromosome segregation and are specified epigenetically by the presence of the histone H3 variant CENP-A. In flies and humans, replenishment of the centromeric mark is uncoupled from DNA replication and requires the removal of H3 "placeholder" nucleosomes. Although transcription at centromeres has been previously linked to the loading of new CENP-A, the underlying molecular mechanism remains poorly understood. Here, we used <i>Drosophila melanogaster</i> tissue cult  ...[more]

Similar Datasets

| S-EPMC9602348 | biostudies-literature
| S-EPMC4477859 | biostudies-literature
| S-EPMC4349457 | biostudies-literature
2020-12-01 | GSE106585 | GEO
| S-EPMC7475651 | biostudies-literature
| S-EPMC7659725 | biostudies-literature
| S-EPMC125570 | biostudies-literature
| S-EPMC6404251 | biostudies-literature
| S-EPMC4906249 | biostudies-other
| S-EPMC2172742 | biostudies-literature