Unknown

Dataset Information

0

Is the gas-phase OH+H2CO reaction a source of HCO in interstellar cold dark clouds? A kinetic, dynamic and modelling study.


ABSTRACT: Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T?10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients (k) of the gas-phase OH+H2CO reaction between 22 and 107 K. k values greatly increase from 2.1×10-11 cm3 s-1 at 107 K to 1.2×10-10 cm3 s-1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface, recently developed which generates highly accurate potential and includes long range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H2CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10K (2.6×10-10 cm3 s-1). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 105-106 yrs. The different sources of production of HCO are presented and the uncertainties in the chemical networks discussed. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. The present reaction is shown to account for a few percent of the total HCO production rate. Extensions to photodissociation regions and diffuse clouds environments are also commented.

SUBMITTER: Ocana AJ 

PROVIDER: S-EPMC5988043 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Is the gas-phase OH+H<sub>2</sub>CO reaction a source of HCO in interstellar cold dark clouds? A kinetic, dynamic and modelling study.

Ocaña A J AJ   Jiménez E E   Ballesteros B B   Canosa A A   Antiñolo M M   Albaladejo J J   Agúndez M M   Cernicharo J J   Zanchet A A   Del Mazo P P   Roncero O O   Aguado A A  

The Astrophysical journal 20171114 1


Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU (<i>Cinétique de Réaction en Ecoulement Supersonique Uniforme</i>, which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for  ...[more]

Similar Datasets

| S-EPMC5856337 | biostudies-literature
| S-EPMC4669547 | biostudies-literature
| S-EPMC3387123 | biostudies-literature
| S-EPMC6542666 | biostudies-literature
| S-EPMC6534499 | biostudies-literature
| S-EPMC3171750 | biostudies-literature
| S-EPMC5975950 | biostudies-literature
| S-EPMC7787479 | biostudies-literature
| S-EPMC7775774 | biostudies-literature
| S-EPMC6014714 | biostudies-literature