Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231.
Ontology highlight
ABSTRACT: Next-generation sequencing (NGS) methods are low-cost high-throughput technologies that produce thousands to millions of sequence reads. Despite the high number of raw sequence reads, their short length, relative to Sanger, PacBio or Nanopore reads, complicates the assembly of genomic repeats. Many genome tools are available, but the assembly of highly repetitive genome sequences using only NGS short reads remains challenging. Genome assembly of organisms responsible for important neglected diseases such as Trypanosoma cruzi, the aetiological agent of Chagas disease, is known to be challenging because of their repetitive nature. Only three of six recognized discrete typing units (DTUs) of the parasite have their draft genomes published and therefore genome evolution analyses in the taxon are limited. In this study, we developed a computational workflow to assemble highly repetitive genomes via a combination of de novo and reference-based assembly strategies to better overcome the intrinsic limitations of each, based on Illumina reads. The highly repetitive genome of the human-infecting parasite T. cruzi 231 strain was used as a test subject. The combined-assembly approach shown in this study benefits from the reference-based assembly ability to resolve highly repetitive sequences and from the de novo capacity to assemble genome-specific regions, improving the quality of the assembly. The acceptable confidence obtained by analyzing our results showed that our combined approach is an attractive option to assemble highly repetitive genomes with NGS short reads. Phylogenomic analysis including the 231 strain, the first representative of DTU III whose genome was sequenced, was also performed and provides new insights into T. cruzi genome evolution.
SUBMITTER: Baptista RP
PROVIDER: S-EPMC5989580 | biostudies-literature | 2018 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA