Unknown

Dataset Information

0

Extended hierarchical solvent perturbations from curved surfaces of mesoporous silica particles in a deep eutectic solvent.


ABSTRACT: HYPOTHESIS:Many applications of deep eutectic solvents (DES) rely on exploitation of their unique yet complex liquid structures. Due to the ionic nature of the DES components, their diffuse structures are perturbed in the presence of a charged surface. We hypothesize that it is possible to perturb the bulk DES structure far (>100?nm) from a curved, charged surface with mesoscopic dimensions. EXPERIMENTS:We performed in situ, synchrotron-based ultra-small angle X-ray scattering (USAXS) experiments to study the solvent distribution near the surface of charged mesoporous silica particles (MPS) (?0.5?µm in diameter) suspended in both water and a common type of DES (1:2 choline Cl-:ethylene glycol). FINDINGS:A careful USAXS analysis reveals that the perturbation of electron density distribution within the DES extends ?1??m beyond the particle surface, and that this perturbation can be manipulated by the addition of salt ions (AgCl). The concentration of the pore-filling fluid is greatly reduced in the DES. Notably, we extracted the real-space structures of these fluctuations from the USAXS data using a simulated annealing approach that does not require a priori knowledge about the scattering form factor, and can be generalized to a wide range of complex small-angle scattering problems.

SUBMITTER: Hammons JA 

PROVIDER: S-EPMC5991083 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Extended hierarchical solvent perturbations from curved surfaces of mesoporous silica particles in a deep eutectic solvent.

Hammons Joshua A JA   Zhang Fan F   Ilavsky Jan J  

Journal of colloid and interface science 20180303


<h4>Hypothesis</h4>Many applications of deep eutectic solvents (DES) rely on exploitation of their unique yet complex liquid structures. Due to the ionic nature of the DES components, their diffuse structures are perturbed in the presence of a charged surface. We hypothesize that it is possible to perturb the bulk DES structure far (>100 nm) from a curved, charged surface with mesoscopic dimensions.<h4>Experiments</h4>We performed in situ, synchrotron-based ultra-small angle X-ray scattering (US  ...[more]

Similar Datasets

| S-EPMC10787769 | biostudies-literature
| S-EPMC9055282 | biostudies-literature
| S-EPMC9576742 | biostudies-literature
| S-EPMC1533801 | biostudies-literature
| S-EPMC3418074 | biostudies-literature
| S-EPMC6709519 | biostudies-literature
| S-EPMC6773253 | biostudies-literature
| S-EPMC7153717 | biostudies-literature
| S-EPMC7221785 | biostudies-literature
| S-EPMC5923560 | biostudies-other