Rapid hepatocyte nuclear translocation of the Forkhead Box M1B (FoxM1B) transcription factor caused a transient increase in size of regenerating transgenic hepatocytes.
Ontology highlight
ABSTRACT: The Forkhead Box (Fox) proteins are an extensive family of transcription factors that shares homology in the winged helix DNA binding domain. Liver regeneration studies with the -3 kb transthyretin (TTR) promoter-driven FoxM1B transgenic (TG) mice demonstrated that premature hepatocyte nuclear localization of the FoxM1B transgene protein at 16 h following partial hepatectomy (PHx) caused an 8-h acceleration in the onset of hepatocyte DNA replication (S-phase) and mitosis by stimulating earlier expression of cell cycle genes. Whether the FoxM1B transgene protein participates in immediate early events during liver regeneration remains to be determined. Here, we found that the FoxM1B transgene protein translocated to hepatocyte nuclei immediately following PHx, that its nuclear staining persisted for the first 6 h after surgery, and that this translocation was associated with an increase in size of regenerating TG hepatocytes. However, regenerating TTR-FoxM1B liver did not exhibit altered expression of proteins that have been implicated in mediating increased cell size, including serum-and-gucocorticoid-inducible protein kinase (SGK), protein kinase-B/Akt, the tumor suppresser gene PTEN (negative regulator of the PI3K/Akt pathway), c-Myc, or peroxisome proliferation. Moreover, we demonstrated that hepatocyte nuclear translocation of the FoxM1B transgene protein was rapidly induced during the hepatic acute phase response, which occurs during the immediate early stages of liver regeneration. Analysis of cDNA expression arrays identified a number of genes such as immediate early transcription factors (ID-3, Stat3, Nur77), matrix metalloproteinase-9 (MMP-9), and several glutathione S-transferase (GST) isoforms and stress response genes, whose expression is elevated in regenerating TTR-FoxM1B TG livers compared with regenerating wild-type (WT) liver. These liver regeneration studies demonstrate that hepatocyte nuclear translocation of the FoxM1B transgene protein was sustained for the first 6 h after PHx, and was associated with transient hypertrophy of regenerating TG hepatocytes and increased expression of genes that may enhance hepatocyte proliferation.
SUBMITTER: Wang X
PROVIDER: S-EPMC5991162 | biostudies-literature | 2003
REPOSITORIES: biostudies-literature
ACCESS DATA