Unknown

Dataset Information

0

Radionuclide Imaging-Guided Chemo-Radioisotope Synergistic Therapy Using a 131I-Labeled Polydopamine Multifunctional Nanocarrier.


ABSTRACT: Development of biocompatible nanomaterials with multiple functionalities for combination of radiotherapy and chemotherapy has attracted tremendous attention in cancer treatment. Herein, poly(ethylene glycol) (PEG) modified polydopamine (PDA) nanoparticles were successfully developed as a favorable biocompatible nanoplatform for co-loading antitumor drugs and radionuclides to achieve imaging-guided combined radio-chemotherapy. It is demonstrated that PEGylated PDA nanoparticles can effectively load two different drugs including sanguinarine (SAN) and metformin (MET), as well as radionuclides 131I in one system. The loaded SAN and MET could inhibit tumor growth via inducing cell apoptosis and relieving tumor hypoxia, while labeling PDA-PEG with 131I enables in vivo radionuclide imaging and radioisotope therapy. As revealed by the therapeutic efficacy both in cell and animal levels, the multifunctional PDA nanoparticles (131I-PDA-PEG-SAN-MET) can effectively repress the growth of cancer cells in a synergistic manner without significant toxic side effects, exhibiting superior treatment outcome than the respective monotherapy. Therefore, this study provides a promising polymer-based platform to realize imaging-guided radioisotope/chemotherapy combination cancer treatment in future clinical application.

SUBMITTER: Li Z 

PROVIDER: S-EPMC5993982 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Radionuclide Imaging-Guided Chemo-Radioisotope Synergistic Therapy Using a <sup>131</sup>I-Labeled Polydopamine Multifunctional Nanocarrier.

Li Zhiqiang Z   Wang Baikui B   Zhang Zheng Z   Wang Bo B   Xu Qiangqiang Q   Mao Wenjie W   Tian Jie J   Yang Kai K   Wang Fu F  

Molecular therapy : the journal of the American Society of Gene Therapy 20180224 5


Development of biocompatible nanomaterials with multiple functionalities for combination of radiotherapy and chemotherapy has attracted tremendous attention in cancer treatment. Herein, poly(ethylene glycol) (PEG) modified polydopamine (PDA) nanoparticles were successfully developed as a favorable biocompatible nanoplatform for co-loading antitumor drugs and radionuclides to achieve imaging-guided combined radio-chemotherapy. It is demonstrated that PEGylated PDA nanoparticles can effectively lo  ...[more]

Similar Datasets

| S-EPMC5327637 | biostudies-literature
| S-EPMC9358776 | biostudies-literature
| S-EPMC9091941 | biostudies-literature
| S-EPMC5990345 | biostudies-literature
| S-EPMC6409598 | biostudies-literature
| S-EPMC8864241 | biostudies-literature
| S-EPMC10816201 | biostudies-literature
| S-EPMC10197810 | biostudies-literature
| S-EPMC9059141 | biostudies-literature
| S-EPMC9616992 | biostudies-literature