Identification of genes and pathways related with cerebral small vessel disease based on a long non-coding RNA-mediated, competitive endogenous RNA network.
Ontology highlight
ABSTRACT: This study aimed to investigate the cerebral small vessel disease (SVD), an intrinsic disorder of the brain's perforating arterioles, which could cause serious cognitive decreasing and trigger dementia. In this study, we present a multi-step computational approach to construct a functional SVD long non-coding RNA (lncRNA)-mediated ceRNA network (LMCN) by integrating genome-wide lncRNA and mRNA expression profiles, miRNA-target interactions, and functional analyses. We used hypergeometric test to evaluate enrichment significance of miRNAs and we obtained the LMCN, which contained 27 lncRNAs, 7,229 mRNA, and 28,871 lncRNAs-mRNA interrelationship pairs. What's more, co-expression analysis was utilized to constructe a competitive endogenous RNAs (ceRNAs) interaction network which comprised of 21 lncRNAs, 129 mRNAs and 141 interaction pairs. We determined that metastasis-associated lung adenocarcinoma transcript 1 and MIR155 host gene acted synergistically to regulate mRNAs in a network module of the competitive LMCN. Moreover, 7 genes were obtained through Gene Ontology enrichment. In addition, 29 mRNA enriched pathways significantly associated with lncRNAs was obtained via Fisher test. In conclusion, we identified 7 potential lncRNAs and 29 possible lncRNA-mediated pathways associated with SVD. Thus, ceRNAs could accelerate biomarker discovery and therapeutic development in SVD.
SUBMITTER: Yan H
PROVIDER: S-EPMC5995035 | biostudies-literature | 2018 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA