Data on PKO biodiesel production using CaO catalyst from Turkey bones.
Ontology highlight
ABSTRACT: In this research paper the production of biodiesel from palm kernel oil (PKO) using CaO obtained from waste turkey bones (WTB) and analytical grade calcium oxide was investigated. Treated WTB was reduced to fine particulate size of <150 µm and then calcinated at 800 °C for 3 h to increase its catalytic activity by its conversion from Calcium phosphate hydroxide (Ca10P6O26H2) to CaO. X-ray diffraction (XRD) and X-ray fluorescent (XRF) analysis of the analytical grade CaO, uncalcined and calcined WTB were carried out to establish their elemental chemical composition. The transesterification reaction between the triglyceride of palm kernel oil (PKO) and methanol was carried out at a constant agitation speed of 600 rpm and temperature of 65 °C, with varied methanol to oil molar ratio (8-14), catalyst concentration (1-7 wt/wt%) and the reaction time (1-3 h). Minitab 17 software (using response surface method) was employed for the design of experiment and statistical analysis required in the transesterification process of biodiesel production. The qualities of the biodiesel produced were assessed and the results obtained showed conformity of the biodiesel produced to the ASTM standard for biodiesel.
SUBMITTER: Ayoola AA
PROVIDER: S-EPMC5997948 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA