Unknown

Dataset Information

0

Serum vitamin C levels modulate the lifespan and endoplasmic reticulum stress response pathways in mice synthesizing a nonfunctional mutant WRN protein.


ABSTRACT: Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase (WRN). Mice lacking part of the helicase domain of the WRN ortholog exhibit several phenotypic features of WS. In this study, we generated a Wrn mutant line that, like humans, relies entirely on dietary sources of vitamin C (ascorbate) to survive, by crossing them to mice that lack the gulonolactone oxidase enzyme required for ascorbate synthesis. In the presence of 0.01% ascorbate (w/v) in drinking water, double-mutant mice exhibited a severe reduction in lifespan, small size, sterility, osteopenia, and metabolic profiles different from wild-type (WT) mice. Although increasing the dose of ascorbate to 0.4% improved dramatically the phenotypes of double-mutant mice, the metabolic and cytokine profiles were different from age-matched WT mice. Finally, double-mutant mice treated with 0.01% ascorbate revealed a permanent activation of all the 3 branches of the ER stress response pathways due to a severe chronic oxidative stress in the ER compartment. In addition, markers associated with the ubiquitin-proteasome-dependent ER-associated degradation pathway were increased. Augmenting the dose of ascorbate reversed the activation of this pathway to WT levels rendering this pathway a potential therapeutic target in WS.-Aumailley, L., Dubois, M. J., Brennan, T. A., Garand, C., Paquet, E. R., Pignolo, R. J., Marette, A., Lebel, M. Serum vitamin C levels modulate the lifespan and endoplasmic reticulum stress response pathways in mice synthesizing a nonfunctional mutant WRN protein.

SUBMITTER: Aumailley L 

PROVIDER: S-EPMC5998970 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5832228 | biostudies-literature
2018-03-02 | PXD007758 | Pride
| S-EPMC8518294 | biostudies-literature
| S-EPMC7926257 | biostudies-literature
| S-EPMC2873071 | biostudies-literature
| S-EPMC3742698 | biostudies-literature
| S-EPMC7046470 | biostudies-literature
| S-EPMC11326278 | biostudies-literature
| S-EPMC7352294 | biostudies-literature
| S-EPMC7175121 | biostudies-literature