Logical modelling uncovers developmental constraints for primary sex determination of chicken gonads.
Ontology highlight
ABSTRACT: In the chicken, sex determination relies on a ZZ (male)/ZW (female) chromosomal system, but underlying mechanisms are still not fully understood. The Z-dosage and the dominant W-chromosome hypotheses have been proposed to underlie primary sex determination. We present a modelling approach, which assembles the current knowledge and permits exploration of the regulation of this process in chickens. Relying on published experimental data, we assembled a gene network, which led to a logical model that integrates both the Z-dosage and dominant W hypotheses. This model showed that the sexual fate of chicken gonads results from the resolution of the mutual inhibition between DMRT1 and FOXL2, where the initial amount of DMRT1 product determines the development of the gonads. In this respect, at the initiation step, a W-factor would function as a secondary device, by reducing the amount of DMRT1 in ZW gonads when the sexual fate of the gonad is settled, that is when the SOX9 functional level is established. Developmental constraints that are instrumental in this resolution were identified. These constraints establish qualitative restrictions regarding the relative transcription rates of the genes DMRT1, FOXL2 and HEMGN. Our model further clarified the role of OESTROGEN in maintaining FOXL2 function during ovary development.
SUBMITTER: Sanchez L
PROVIDER: S-EPMC6000168 | biostudies-literature | 2018 May
REPOSITORIES: biostudies-literature
ACCESS DATA