Unknown

Dataset Information

0

Oxidation of squalene by singlet oxygen and free radicals results in different compositions of squalene monohydroperoxide isomers.


ABSTRACT: Oxidation of squalene (SQ) causes a decline in the nutritional value of SQ in foods, as well as an accumulation of SQ oxidation products in skin lipids which lead to adverse skin conditions. However, mechanistic insights as to how SQ is oxidized by different oxidation mechanisms have been limited, and thus effective measures towards the prevention of SQ oxidation have not been identified. In this study, we oxidized SQ by either singlet oxygen oxidation or free radical oxidation, and monitored the formation of the six SQ monohydroperoxide (SQOOH) isomers, the primary oxidation products of SQ, at the isomeric level. While singlet oxygen oxidation of SQ resulted in the formation of similar amounts of the six SQOOH isomers, free radical oxidation of SQ mainly formed two types of isomers, 2-OOH-SQ and 3-OOH-SQ. The addition of ?-carotene during singlet oxygen oxidation, and the addition of ?-tocopherol during free radical oxidation lead to a dose-dependent decrease in the formation of SQOOH isomers. Such results suggest that the analysis of SQOOH at the isomeric level allows for the determination of the cause of SQ oxidation in various samples, and provides a foothold for future studies concerning the prevention of SQ oxidation.

SUBMITTER: Shimizu N 

PROVIDER: S-EPMC6002538 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Oxidation of squalene by singlet oxygen and free radicals results in different compositions of squalene monohydroperoxide isomers.

Shimizu Naoki N   Ito Junya J   Kato Shunji S   Otoki Yurika Y   Goto Masashi M   Eitsuka Takahiro T   Miyazawa Teruo T   Nakagawa Kiyotaka K  

Scientific reports 20180614 1


Oxidation of squalene (SQ) causes a decline in the nutritional value of SQ in foods, as well as an accumulation of SQ oxidation products in skin lipids which lead to adverse skin conditions. However, mechanistic insights as to how SQ is oxidized by different oxidation mechanisms have been limited, and thus effective measures towards the prevention of SQ oxidation have not been identified. In this study, we oxidized SQ by either singlet oxygen oxidation or free radical oxidation, and monitored th  ...[more]

Similar Datasets

| S-EPMC4735226 | biostudies-literature
2021-02-28 | GSE111288 | GEO
| S-EPMC9930917 | biostudies-literature
2021-02-28 | GSE111287 | GEO
2021-02-28 | GSE111286 | GEO
2021-02-28 | GSE111285 | GEO
2021-02-28 | GSE111284 | GEO
| S-EPMC5947587 | biostudies-other
| S-EPMC8048875 | biostudies-literature
| PRJNA436410 | ENA